Displaying 201 – 220 of 597

Showing per page

Gradient flows in Wasserstein spaces and applications to crowd movement

Filippo Santambrogio (2010/2011)

Séminaire Équations aux dérivées partielles

Starting from a motivation in the modeling of crowd movement, the paper presents the topics of gradient flows, first in n , then in metric spaces, and finally in the space of probability measures endowed with the Wasserstein distance (induced by the quadratic transport cost). Differently from the usual theory by Jordan-Kinderlehrer-Otto and Ambrosio-Gigli-Savaré, we propose an approach where the optimality conditions for the minimizers of the optimization problems that one solves at every time step...

Gradient flows in Wasserstein spaces and applications to crowd movement

Filippo Santambrogio (2009/2010)

Séminaire Équations aux dérivées partielles

Starting from a motivation in the modeling of crowd movement, the paper presents the topics of gradient flows, first in n , then in metric spaces, and finally in the space of probability measures endowed with the Wasserstein distance (induced by the quadratic transport cost). Differently from the usual theory by Jordan-Kinderlehrer-Otto and Ambrosio-Gigli-Savaré, we propose an approach where the optimality conditions for the minimizers of the optimization problems that one solves at every time step...

Gradient regularity for minimizers of functionals under p - q subquadratic growth

F. Leonetti, E. Mascolo, F. Siepe (2001)

Bollettino dell'Unione Matematica Italiana

Si prova la maggior sommabilità del gradiente dei minimi locali di funzionali integrali della forma Ω f D u d x , dove f soddisfa l'ipotesi di crescita ξ p - c 1 f ξ c 1 + ξ q , con 1 < p < q 2 . L'integrando f è C 2 e D D f ha crescita p - 2 dal basso e q - 2 dall'alto.

Hamilton–Jacobi equations and two-person zero-sum differential games with unbounded controls

Hong Qiu, Jiongmin Yong (2013)

ESAIM: Control, Optimisation and Calculus of Variations

A two-person zero-sum differential game with unbounded controls is considered. Under proper coercivity conditions, the upper and lower value functions are characterized as the unique viscosity solutions to the corresponding upper and lower Hamilton–Jacobi–Isaacs equations, respectively. Consequently, when the Isaacs’ condition is satisfied, the upper and lower value functions coincide, leading to the existence of the value function of the differential game. Due to the unboundedness of the controls,...

High-performance simulation-based algorithms for an alpine ski racer's trajectory optimization in heterogeneous computer systems

Roman Dębski (2014)

International Journal of Applied Mathematics and Computer Science

Effective, simulation-based trajectory optimization algorithms adapted to heterogeneous computers are studied with reference to the problem taken from alpine ski racing (the presented solution is probably the most general one published so far). The key idea behind these algorithms is to use a grid-based discretization scheme to transform the continuous optimization problem into a search problem over a specially constructed finite graph, and then to apply dynamic programming to find an approximation...

Hölder continuity results for a class of functionals with non-standard growth

Michela Eleuteri (2004)

Bollettino dell'Unione Matematica Italiana

We prove regularity results for real valued minimizers of the integral functional f x , u , D u under non-standard growth conditions of p x -type, i.e. L - 1 z p x f x , s , z L 1 + z p x under sharp assumptions on the continuous function p x > 1 .

Hölder regularity of two-dimensional almost-minimal sets in n

Guy David (2009)

Annales de la faculté des sciences de Toulouse Mathématiques

We give a different and probably more elementary proof of a good part of Jean Taylor’s regularity theorem for Almgren almost-minimal sets of dimension 2 in 3 . We use this opportunity to settle some details about almost-minimal sets, extend a part of Taylor’s result to almost-minimal sets of dimension 2 in n , and give the expected characterization of the closed sets E of dimension 2 in 3 that are minimal, in the sense that H 2 ( E F ) H 2 ( F E ) for every closed set F such that there is a bounded set B so that F = E out...

Currently displaying 201 – 220 of 597