Regularity for non-uniformly elliptic systems and application to some variational integrals.
The aim of this paper is to study the problem of regularity of displacement solutions in Hencky plasticity. Here, a non-homogeneous material is considered, where the elastic-plastic properties change discontinuously. In the first part, we have found the extremal relation between the displacement formulation defined on the space of bounded deformation and the stress formulation of the variational problem in Hencky plasticity. In the second part, we prove that the displacement...
The aim of this paper is to study the problem of regularity of displacement solutions in Hencky plasticity. A non-homogeneous material whose elastic-plastic properties change discontinuously is considered. We find (in an explicit form) the extremal relation between the displacement formulation (defined on the space of bounded deformation) and the stress formulation of the variational problem in Hencky plasticity. This extremal relation is used in the proof of the regularity of displacements. ...
I am presenting a survey of regularity results for both minima of variational integrals, and solutions to non-linear elliptic, and sometimes parabolic, systems of partial differential equations. I will try to take the reader to the Dark Side...
We prove the hypoellipticity for systems of Hörmander type with constant coefficients in Carnot groups of step 2. This result is used to implement blow-up methods and prove partial regularity for local minimizers of non-convex functionals, and for solutions of non-linear systems which appear in the study of non-isotropic metric structures with scalings. We also establish estimates of the Hausdorff dimension of the singular set.
In this paper, we prove some regularity results for the boundary of an open subset of which minimizes the Dirichlet’s energy among all open subsets with prescribed volume. In particular we show that, when the volume constraint is “saturated”, the reduced boundary of the optimal shape (and even the whole boundary in dimension 2) is regular if the state function is nonnegative.
In this paper, we prove some regularity results for the boundary of an open subset of which minimizes the Dirichlet's energy among all open subsets with prescribed volume. In particular we show that, when the volume constraint is “saturated”, the reduced boundary of the optimal shape (and even the whole boundary in dimension 2) is regular if the state function is nonnegative.
This article addresses regularity of optimal transport maps for cost=“squared distance” on Riemannian manifolds that are products of arbitrarily many round spheres with arbitrary sizes and dimensions. Such manifolds are known to be non-negatively cross-curved. Under boundedness and non-vanishing assumptions on the transfered source and target densities we show that optimal maps stay away from the cut-locus (where the cost exhibits singularity), and obtain injectivity and continuity of optimal maps....
The aim of this paper is to study the problem of regularity of solutions in Hencky plasticity. We consider a non-homogeneous material whose elastic-plastic properties change discontinuously. We prove that the displacement solutions belong to the space if the stress solution is continuous and belongs to the interior of the set of admissible stresses, at each point. The part of the functional which describes the work of boundary forces is relaxed.
The aim of this paper is to study the problem of regularity of displacement solutions in Hencky plasticity. We consider a plate made of a non-homogeneous material whose elastic-plastic properties change discontinuously. We prove that the displacement solutions belong to the space if the stress solution is continuous and belongs to the interior of the set of admissible stresses, at each point. The part of the functional which describes the work of boundary forces is relaxed.