The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Page 1

Displaying 1 – 6 of 6

Showing per page

The H–1-norm of tubular neighbourhoods of curves

Yves van Gennip, Mark A. Peletier (2011)

ESAIM: Control, Optimisation and Calculus of Variations

We study the H–1-norm of the function 1 on tubular neighbourhoods of curves in 2 . We take the limit of small thicknessε, and we prove two different asymptotic results. The first is an asymptotic development for a fixed curve in the limit ε → 0, containing contributions from the length of the curve (at order ε3), the ends (ε4), and the curvature (ε5). The second result is a Γ-convergence result, in which the central curve may vary along the sequence ε → 0. We prove that a rescaled version of the...

The H–1-norm of tubular neighbourhoods of curves

Yves van Gennip, Mark A. Peletier (2011)

ESAIM: Control, Optimisation and Calculus of Variations

We study the H–1-norm of the function 1 on tubular neighbourhoods of curves in 2 . We take the limit of small thickness ε, and we prove two different asymptotic results. The first is an asymptotic development for a fixed curve in the limit ε → 0, containing contributions from the length of the curve (at order ε3), the ends (ε4), and the curvature (ε5). The second result is a Γ-convergence result, in which the central curve may vary along the sequence ε → 0. We prove that a rescaled version of...

Currently displaying 1 – 6 of 6

Page 1