Hyperbolic 4-manifolds and tesselations
Nicholaas H. Kuiper (1988)
Publications Mathématiques de l'IHÉS
Pambuccian, Victor (2004)
Mathematica Pannonica
Michael Gromov (1979/1980)
Séminaire Bourbaki
Petr Kůrka (2014)
Pokroky matematiky, fyziky a astronomie
Belegradek, Igor (1998)
Geometry & Topology
C. McMullen (1990)
Inventiones mathematicae
J. Mennicke, J. Elstrodt, F. Grunewald (1990)
Inventiones mathematicae
J. Strommer (1975)
Journal für die reine und angewandte Mathematik
Peter Greenberg (1990/1991)
Séminaire de théorie spectrale et géométrie
Pinelis, Iosif (2005)
JIPAM. Journal of Inequalities in Pure & Applied Mathematics [electronic only]
Yinping Wu, Gendi Wang, Gaili Jia, Xiaohui Zhang (2024)
Czechoslovak Mathematical Journal
Let be a nonempty open set in a metric space with . Define where is the distance from to the boundary of . For every , is a metric. We study the sharp Lipschitz constants for the metric under Möbius transformations of the unit ball, the upper half space, and the punctured unit ball.
Mednykh, A.D., Vesnin, A.Yu. (2007)
Sibirskie Ehlektronnye Matematicheskie Izvestiya [electronic only]
Höfer, Roland (1999)
Beiträge zur Algebra und Geometrie
J. E. Valentine, S. G. Wayment (1972)
Colloquium Mathematicae
Urban, Herbert (1995)
Beiträge zur Algebra und Geometrie
Glen Sherman (1991)
Fundamenta Mathematicae
Abraham A. Ungar (2008)
Commentationes Mathematicae Universitatis Carolinae
Hyperbolic vectors, called gyrovectors, share analogies with vectors in Euclidean geometry. It is emphasized that the Bloch vector of Quantum Information and Computation (QIC) is, in fact, a gyrovector related to Möbius addition rather than a vector. The decomplexification of Möbius addition in the complex open unit disc of a complex plane into an equivalent real Möbius addition in the open unit ball of a Euclidean 2-space is presented. This decomplexification proves useful, enabling the resulting...
Oona Rainio, Matti Vuorinen (2023)
Czechoslovak Mathematical Journal
The Möbius metric is studied in the cases, where its domain is an open sector of the complex plane. We introduce upper and lower bounds for this metric in terms of the hyperbolic metric and the angle of the sector, and then use these results to find bounds for the distortion of the Möbius metric under quasiregular mappings defined in sector domains. Furthermore, we numerically study the Möbius metric and its connection to the hyperbolic metric in polygon domains.
D. Ruberman (1987)
Inventiones mathematicae
František Machala (1971)
Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica-Physica-Chemica