Remark on "Planes with analogues to Eucledian angular bisectors".
We recall necessary notions about the geometry and harmonic analysis on a hyperbolic space and provide lecture notes about homogeneous random functions parameterized by this space. The general principles are illustrated by construction of numerous examples analogous to Euclidean case. We also give a brief survey of the fields parameterized by Euclidean spheres. At the end we give a list of important open questions in hyperbolic case.
We recall necessary notions about the geometry and harmonic analysis on a hyperbolic space and provide lecture notes about homogeneous random functions parameterized by this space. The general principles are illustrated by construction of numerous examples analogous to Euclidean case. We also give a brief survey of the fields parameterized by Euclidean spheres. At the end we give a list of important open questions in hyperbolic case.
The aim of this paper is to give a classification of the right-angled hyperbolic hexagons in the real hyperbolic space , by using a quaternionic distance between geodesics in .
Un polyèdre hyperbolique semi-idéal est un polyèdre dont les sommets sont dans l’espace hyperbolique ou à l’infini. Un polyèdre hyperbolique hyperidéal est, dans le modèle projectif, l’intersection de avec un polyèdre projectif dont les sommets sont tous en dehors de et dont toutes les arêtes rencontrent . Nous classifions les polyèdres semi-idéaux en fonction de leur métrique duale, d’après les résultats de Rivin dans [8] (écrit avec C.D.Hodgson) et [7]. Nous utilisons ce résultat pour retrouver...
The second author found a gap in the proof of the main theorem in [J. Mycielski, Fund. Math. 132 (1989), 143-149]. Here we fill that gap and add some remarks about the geometry of the hyperbolic plane ℍ².
We develop the boundary theory of rough CAT(0) spaces, a class of length spaces that contains both Gromov hyperbolic length spaces and CAT(0) spaces. The resulting theory generalizes the common features of the Gromov boundary of a Gromov hyperbolic length space and the ideal boundary of a complete CAT(0) space. It is not assumed that the spaces are geodesic or proper
Some gyrocommutative gyrogroups, also known as Bruck loops or K-loops, admit scalar multiplication, turning themselves into gyrovector spaces. The latter, in turn, form the setting for hyperbolic geometry just as vector spaces form the setting for Euclidean geometry. In classical mechanics the centroid of a triangle in velocity space is the velocity of the center of momentum of three massive objects with equal masses located at the triangle vertices. Employing gyrovector space techniques we find...
In [Comput. Math. Appl. 41 (2001), 135--147], A. A. Ungar employs the Möbius gyrovector spaces for the introduction of the hyperbolic trigonometry. This Ungar's work plays a major role in translating some theorems from Euclidean geometry to corresponding theorems in hyperbolic geometry. In this paper we explore the theorems of Stewart and Steiner in the Poincaré disc model of hyperbolic geometry.