Previous Page 2

Displaying 21 – 28 of 28

Showing per page

Minkowskian rhombi and squares inscribed in convex Jordan curves

Horst Martini, Senlin Wu (2010)

Colloquium Mathematicae

We show that any convex Jordan curve in a normed plane admits an inscribed Minkowskian square. In addition we prove that no two different Minkowskian rhombi with the same direction of one diagonal can be inscribed in the same strictly convex Jordan curve.

Möbius gyrovector spaces in quantum information and computation

Abraham A. Ungar (2008)

Commentationes Mathematicae Universitatis Carolinae

Hyperbolic vectors, called gyrovectors, share analogies with vectors in Euclidean geometry. It is emphasized that the Bloch vector of Quantum Information and Computation (QIC) is, in fact, a gyrovector related to Möbius addition rather than a vector. The decomplexification of Möbius addition in the complex open unit disc of a complex plane into an equivalent real Möbius addition in the open unit ball 𝔹 2 of a Euclidean 2-space 2 is presented. This decomplexification proves useful, enabling the resulting...

Morley’s Trisector Theorem

Roland Coghetto (2015)

Formalized Mathematics

Morley’s trisector theorem states that “The points of intersection of the adjacent trisectors of the angles of any triangle are the vertices of an equilateral triangle” [10]. There are many proofs of Morley’s trisector theorem [12, 16, 9, 13, 8, 20, 3, 18]. We follow the proof given by A. Letac in [15].

Multiplicative Cauchy functional equation and the equation of ratios on the Lorentz cone

Jacek Wesołowski (2007)

Studia Mathematica

It is proved that the solution of the multiplicative Cauchy functional equation on the Lorentz cone of dimension greater than two is a power function of the determinant. The equation is solved in full generality, i.e. no smoothness assumptions on the unknown function are imposed. Also the functional equation of ratios, of a similar nature, is solved in full generality.

Currently displaying 21 – 28 of 28

Previous Page 2