Displaying 1221 – 1240 of 1463

Showing per page

Theorems of the alternative for cones and Lyapunov regularity of matrices

Bryan Cain, Daniel Hershkowitz, Hans Schneider (1997)

Czechoslovak Mathematical Journal

Standard facts about separating linear functionals will be used to determine how two cones C and D and their duals C * and D * may overlap. When T V W is linear and K V and D W are cones, these results will be applied to C = T ( K ) and D , giving a unified treatment of several theorems of the alternate which explain when C contains an interior point of D . The case when V = W is the space H of n × n Hermitian matrices, D is the n × n positive semidefinite matrices, and T ( X ) = A X + X * A yields new and known results about the existence of block diagonal...

Thin-shell concentration for convex measures

Matthieu Fradelizi, Olivier Guédon, Alain Pajor (2014)

Studia Mathematica

We prove that for s < 0, s-concave measures on ℝⁿ exhibit thin-shell concentration similar to the log-concave case. This leads to a Berry-Esseen type estimate for most of their one-dimensional marginal distributions. We also establish sharp reverse Hölder inequalities for s-concave measures.

Topologies faciales dans les convexes compacts. Calcul fonctionnel et décomposition spectrale dans le centre d’un espace A ( X )

Marc Rogalski (1972)

Annales de l'institut Fourier

Cet article étudie, sur l’ensemble 𝒮 ( X ) des points extrémaux d’un convexe compact X , des topologies faciales dont les fermés sont les traces de faces F “parallélisables” (il existe une plus grande face F ' disjointe de F , et tout x de X s’écrit x = λ y + ( 1 - λ ) y ' , y F , y ' F ' , avec λ unique). Les topologies faciales uniformisables sont en bijection avec les sous-espaces réticulés fermés et contenant 1 de l’espace A ( X ) des fonctions affines continues sur X . Ceci redonne des résultats classiques sur les simplexes, et permet une étude...

Topology and geometry of nontrivial rank-one convex hulls for two-by-two matrices

Carl-Friedrich Kreiner, Johannes Zimmer (2006)

ESAIM: Control, Optimisation and Calculus of Variations

Continuing earlier work by Székelyhidi, we describe the topological and geometric structure of so-called T4-configurations which are the most prominent examples of nontrivial rank-one convex hulls. It turns out that the structure of T4-configurations in 2 × 2 is very rich; in particular, their collection is open as a subset of ( 2 × 2 ) 4 . Moreover a previously purely algebraic criterion is given a geometric interpretation. As a consequence, we sketch an improved algorithm to detect T4-configurations. ...

Currently displaying 1221 – 1240 of 1463