Totally singular Lagrangians and affine Hamiltonians.
2000 Mathematics Subject Classification: 53C40, 53B25.In the present note we study totally umbilical pseudo-slant submanifolds of a nearly cosymplectic manifold. We have obtained a classification theorem for totally umbilical pseudo-slant submanifolds of a nearly cosymplectic manifold.
We investigate totally umbilical submanifolds in manifolds satisfying some curvature conditions of either recurrent or pseudosymmetry type in the sense of Ryszard Deszcz and derive the respective condition for submanifolds. We also prove some relations involving the mean curvature and the Weyl conformal curvature tensor of submanifolds. Some examples are discussed.
[For the entire collection see Zbl 0699.00032.] A fibration is called totally noncohomologuous to zero (TNCZ) with respect to the coefficient field k, if is surjective. This is equivalent to saying that acts trivially on and the Serre spectral sequence collapses at . S. Halperin conjectured that for and F a 1-connected rationally elliptic space (i.e., both and are finite dimensional) such that vanishes in odd degrees, every fibration is TNCZ. The author proves this being the case...
We investigate the traceless component of the conformal curvature tensor defined by (2.1) in Kähler manifolds of dimension , and show that the traceless component is invariant under concircular change. In particular, we determine Kähler manifolds with vanishing traceless component and improve some theorems (for example, [4, pp. 313–317]) concerning the conformal curvature tensor and the spectrum of the Laplacian acting on
Geometry of traceless cubic forms is studied. It is shown that the traceless part of the cubic form on a statistical manifold determines a conformal-projective equivalence class of statistical manifolds. This conformal-projective equivalence on statistical manifolds is a natural generalization of conformal equivalence on Riemannian manifolds. As an application, Tchebychev type immersions in centroaffine immersions of codimension two are studied.