-symmetric submanifolds
First as an application of the local structure theorem for Nambu-Poisson tensors, we characterize them in terms of differential forms. Secondly left invariant Nambu-Poisson tensors on Lie groups are considered.
All natural affinors on the -th order cotangent bundle are determined. Basic affinors of this type are the identity affinor id of and the -th power affinors with defined by the -th power transformations of . An arbitrary natural affinor is a linear combination of the basic ones.
Let be such that . Let be a fibered manifold with -dimensional basis and -dimensional fibers. All natural affinors on are classified. It is deduced that there is no natural generalized connection on . Similar problems with instead of are solved.
We deduce that for and , every natural affinor on over -manifolds is of the form for a real number , where is the identity affinor on .
For natural numbers r,s,q,m,n with s ≥ r ≤ q we describe all natural affinors on the (r,s,q)-cotangent bundle over an (m,n)-dimensional fibered manifold Y.
We consider several explicit examples of solutions of the differential equation Φ₁’²(z) + Φ₂’²(z) + Φ₃’²(z) = d²(z) of meromorphic curves in ℂ³ with preset infinitesimal arclength function d(z) by nonlinear differential operators of the form (f,h,d) → V(f,h,d), V = (Φ₁,Φ₂,Φ₃), whose arguments are triples consisting of a meromorphic function f, a meromorphic vector field h, and a meromorphic differential 1-form d on an open set U ⊂ ℂ or, more general, on a Riemann surface Σ. Most of them are natural...
We obtain the natural diagonal almost product and locally product structures on the total space of the cotangent bundle of a Riemannian manifold. Studying the compatibility and the anti-compatibility relations between the determined structures and a natural diagonal metric, we find the Riemannian almost product (locally product) and the (almost) para-Hermitian cotangent bundles of natural diagonal lift type. Finally, we prove the characterization theorem for the natural diagonal (almost) para-Kählerian...
Let and be two natural bundles over -manifolds. We prove that if is of type (I) and is of type (II), then any natural differential operator of into is of order 0. We give examples of natural bundles of type (I) or of type (II). As an application of the main theorem we determine all natural differential operators between some natural bundles.
We determine all natural functions on and .
One studies the flow prolongation of projectable vector fields with respect to a bundle functor of order on the category of fibered manifolds. As a result, one constructs an operator transforming connections on a fibered manifold into connections on an arbitrary vertical bundle over . It is deduced that this operator is the only natural one of finite order and one presents a condition on vertical bundles over under which every natural operator in question has finite order.