Displaying 81 – 100 of 704

Showing per page

The closed Friedman world model with the initial and final singularities as a non-commutative space

Michael Heller, Wiesław Sasin (1997)

Banach Center Publications

The most elegant definition of singularities in general relativity as b-boundary points, when applied to the closed Friedman world model, leads to the disastrous situation: both the initial and final singularities form the single point of the b-boundary which is not Hausdorff separated from the rest of space-time. We apply Alain Connes' method of non-commutative geometry, defined in terms of a C*-algebra, to this case. It turns out that both the initial and final singularities can be analysed as...

The conformal change of the metric of an almost Hermitian manifold applied to the antiholomorphic curvature tensor

Mileva Prvanović (2013)

Communications in Mathematics

By using the technique of decomposition of a Hermitian vector space under the action of a unitary group, Ganchev [2] obtained a tensor which he named the Weyl component of the antiholomorphic curvature tensor. We show that the same tensor can be obtained by direct application of the conformal change of the metric to the antiholomorphic curvature tensor. Also, we find some other conformally curvature tensors and examine some relations between them.

The CR Yamabe conjecture the case n = 1

Najoua Gamara (2001)

Journal of the European Mathematical Society

Let ( M , θ ) be a compact CR manifold of dimension 2 n + 1 with a contact form θ , and L = ( 2 + 2 / n ) Δ b + R its associated CR conformal laplacien. The CR Yamabe conjecture states that there is a contact form θ ˜ on M conformal to θ which has a constant Webster curvature. This problem is equivalent to the existence of a function u such that L u = u 1 + 2 / n , u > 0 on M . D. Jerison and J. M. Lee solved the CR Yamabe problem in the case where n 2 and ( M , θ ) is not locally CR equivalent to the sphere S 2 n + 1 of 𝐂 n . In a join work with R. Yacoub, the CR Yamabe problem...

The CUDA implementation of the method of lines for the curvature dependent flows

Tomáš Oberhuber, Atsushi Suzuki, Vítězslav Žabka (2011)

Kybernetika

We study the use of a GPU for the numerical approximation of the curvature dependent flows of graphs - the mean-curvature flow and the Willmore flow. Both problems are often applied in image processing where fast solvers are required. We approximate these problems using the complementary finite volume method combined with the method of lines. We obtain a system of ordinary differential equations which we solve by the Runge-Kutta-Merson solver. It is a robust solver with an automatic choice of the...

Currently displaying 81 – 100 of 704