Complex affine transversal bundles for surfaces in .
Holomorphic maps of Cartan domains of type four preserving the supports of complex geodesics are characterized, providing, in particular, a new description of holomorphic isometries.
There is an obvious topological obstruction for a finite energy unimodular harmonic extension of a -valued function defined on the boundary of a bounded regular domain of . When such extensions do not exist, we use the Ginzburg-Landau relaxation procedure. We prove that, up to a subsequence, a sequence of Ginzburg-Landau minimizers, as the coupling parameter tends to infinity, converges to a unimodular harmonic map away from a codimension-2 minimal current minimizing the area within the homology...
This is an exposition of a general machinery developed by M. G. Eastwood, T. N. Bailey, C. R. Graham which analyses some real integral transforms using complex methods. The machinery deals with double fibrations complex manifold; totally real, real-analytic submanifold;...