Ein Eindeutigkeitssatz für Minimalflächen im Rp mit polygonalem Rand.
It was observed by R. Kusner and proved by J. Ratzkin that one can connect together two constant mean curvature surfaces having two ends with the same Delaunay parameter. This gluing procedure is known as a “end-to-end connected sum”. In this paper we generalize, in any dimension, this gluing procedure to construct new constant mean curvature hypersurfaces starting from some known hypersurfaces.
In the first part of this paper, we study the best constant involving the L2 norm in Wente's inequality. We prove that this best constant is universal for any Riemannian surface with boundary, or respectively, for any Riemannian surface without boundary. The second part concerns the study of critical points of the associate energy functional, whose Euler equation corresponds to H-surfaces. We will establish the existence of a non-trivial critical point for a plan domain with small holes.
Nous construisons une famille de surfaces de Riemann hyperelliptiques, de genre variable, munies de fonctions méromorphes de degré deux et d’indice un, ce qui apporte une réponse positive à une conjecture de S. Montiel et A. Ros.