Lagrange spaces with indicatrices as constant mean curvature surfaces or minimal surfaces.
Page 1
Crâşmăreanu, Mircea (2002)
Analele Ştiinţifice ale Universităţii “Ovidius" Constanţa. Seria: Matematică
Michael Struwe (1985)
Mathematische Annalen
P. Collin, R. Krust (1991)
Bulletin de la Société Mathématique de France
F. Bethuel, O. Rey (1992/1993)
Séminaire Équations aux dérivées partielles (Polytechnique)
Laurent Mazet (2007)
Annales de l'I.H.P. Analyse non linéaire
Alexander G. Reznikov (1992)
Publicacions Matemàtiques
We show that the apparatus of support functions, usually used in convex surfaces theory, leads to the linear equation Δh + 2h = 0 describing locally germs of minimal surfaces. Here Δ is the Laplace-Beltrami operator on the standard two-dimensional sphere. It explains the existence of the sum operator of minimal surfaces, introduced recently. In 4-dimensional space the equation Δ h + 2h = 0 becomes inequality wherever the Gauss curvature of a minimal hypersurface is nonzero.
Robert Černý (2009)
Commentationes Mathematicae Universitatis Carolinae
We give a sufficient condition for a curve to ensure that the -dimensional Hausdorff measure restricted to is locally monotone.
Robert Černý (2010)
Commentationes Mathematicae Universitatis Carolinae
We prove that the 1-dimensional Hausdorff measure restricted to a simple real analytic curve , , is locally 1-monotone.
Robert Cerný (2004)
Publicacions Matemàtiques
Peterson, Aaron, Taylor, Stephen (2008)
Balkan Journal of Geometry and its Applications (BJGA)
M. A. Magid (2004)
Annales Polonici Mathematici
Lorentzian surfaces in Lorentz three-space are studied using an indefinite version of the quaternions. A classification theorem for Bonnet pairs in Lorentz three-space is obtained.
Page 1