On a class of graphs with perscribed mean curvature.
The paper is about a sub-supersolution method for the prescribed mean curvature problem. We formulate the problem as a variational inequality and propose appropriate concepts of sub- and supersolutions for such inequality. Existence and enclosure results for solutions and extremal solutions between sub- and supersolutions are established.
Our aim is to apply suitable generalized maximum principles in order to obtain characterization results concerning complete linear Weingarten hypersurfaces immersed in a locally symmetric Riemannian manifold, whose sectional curvature is supposed to obey standard constraints. In this setting, we establish sufficient conditions to guarantee that such a hypersurface must be either totally umbilical or an isoparametric hypersurface with two distinct principal curvatures one of which is simple.
It was conjectured in [26] that, for all submanifolds of all real space forms , the Wintgen inequality is valid at all points of , whereby is the normalised scalar curvature of the Riemannian manifold and , respectively , are the squared mean curvature and the normalised scalar normal curvature of the submanifold in the ambient space , and this conjecture was shown there to be true whenever codimension . For a given Riemannian manifold , this inequality can be interpreted as follows:...