Page 1

Displaying 1 – 8 of 8

Showing per page

Lagrangians and Euler morphisms on fibered-fibered frame bundles from projectable-projectable classical linear connections

Anna Bednarska (2011)

Annales UMCS, Mathematica

We classify all F2Mm1, m2, n1, n2-natural operators Atransforming projectable-projectable torsion-free classical linear connections ∇ on fibered-fibered manifolds Y of dimension (m1,m2, n1, n2) into rth order Lagrangians A(∇) on the fibered-fibered linear frame bundle Lfib-fib(Y) on Y. Moreover, we classify all F2Mm1, m2, n1, n2-natural operators B transforming projectable-projectable torsion-free classical linear connections ∇ on fiberedfibered manifolds Y of dimension (m1, m2, n1, n2) into Euler...

Liftings of 1 -forms to the linear r -tangent bundle

Włodzimierz M. Mikulski (1995)

Archivum Mathematicum

Let r , n be fixed natural numbers. We prove that for n -manifolds the set of all linear natural operators T * T * T ( r ) is a finitely dimensional vector space over R . We construct explicitly the bases of the vector spaces. As a corollary we find all linear natural operators T * T r * .

Liftings of 1-forms to ( J r T * ) *

Włodzimierz M. Mikulski (2002)

Colloquium Mathematicae

Let J r T * M be the r-jet prolongation of the cotangent bundle of an n-dimensional manifold M and let ( J r T * M ) * be the dual vector bundle. For natural numbers r and n, a complete classification of all linear natural operators lifting 1-forms from M to 1-forms on ( J r T * M ) * is given.

Linear liftings of affinors to Weil bundles

Jacek Dębecki (2003)

Colloquium Mathematicae

We give a classification of all linear natural operators transforming affinors on each n-dimensional manifold M into affinors on T A M , where T A is the product preserving bundle functor given by a Weil algebra A, under the condition that n ≥ 2.

Linear liftings of skew-symmetric tensor fields to Weil bundles

Jacek Dębecki (2005)

Czechoslovak Mathematical Journal

We define equivariant tensors for every non-negative integer p and every Weil algebra A and establish a one-to-one correspondence between the equivariant tensors and linear natural operators lifting skew-symmetric tensor fields of type ( p , 0 ) on an n -dimensional manifold M to tensor fields of type ( p , 0 ) on T A M if 1 p n . Moreover, we determine explicitly the equivariant tensors for the Weil algebras 𝔻 k r , where k and r are non-negative integers.

Currently displaying 1 – 8 of 8

Page 1