Page 1

Displaying 1 – 10 of 10

Showing per page

Invariant subspaces in higher order jet prolongations of a fibred manifold

Miroslav Doupovec, Alexandr Vondra (2000)

Czechoslovak Mathematical Journal

We present a generalization of the concept of semiholonomic jets within the framework of higher order prolongations of a fibred manifold. In this respect, a compilation of our 2-fibred manifold approach with the methods of natural operators theory is used.

Invariant tracking

Philippe Martin, Pierre Rouchon, Joachim Rudolph (2004)

ESAIM: Control, Optimisation and Calculus of Variations

The problem of invariant output tracking is considered: given a control system admitting a symmetry group G , design a feedback such that the closed-loop system tracks a desired output reference and is invariant under the action of G . Invariant output errors are defined as a set of scalar invariants of G ; they are calculated with the Cartan moving frame method. It is shown that standard tracking methods based on input-output linearization can be applied to these invariant errors to yield the required...

Invariant tracking

Philippe Martin, Pierre Rouchon, Joachim Rudolph (2010)

ESAIM: Control, Optimisation and Calculus of Variations

The problem of invariant output tracking is considered: given a control system admitting a symmetry group G, design a feedback such that the closed-loop system tracks a desired output reference and is invariant under the action of G. Invariant output errors are defined as a set of scalar invariants of G; they are calculated with the Cartan moving frame method. It is shown that standard tracking methods based on input-output linearization can be applied to these invariant errors to yield the...

Invariants and Bonnet-type theorem for surfaces in ℝ4

Georgi Ganchev, Velichka Milousheva (2010)

Open Mathematics

In the tangent plane at any point of a surface in the four-dimensional Euclidean space we consider an invariant linear map ofWeingarten-type and find a geometrically determined moving frame field. Writing derivative formulas of Frenet-type for this frame field, we obtain eight invariant functions. We prove a fundamental theorem of Bonnet-type, stating that these eight invariants under some natural conditions determine the surface up to a motion. We show that the basic geometric classes of surfaces...

Currently displaying 1 – 10 of 10

Page 1