On weakly symmetric manifolds with a type of semi-symmetric non-metric connection
The object of the present paper is to study weakly symmetric manifolds admitting a type of semi-symmetric non-metric connection.
The object of the present paper is to study weakly symmetric manifolds admitting a type of semi-symmetric non-metric connection.
The object of the present paper is to study weakly -symmetric manifolds and its decomposability with the existence of such notions. Among others it is shown that in a decomposable weakly -symmetric manifold both the decompositions are weakly Ricci symmetric.
The aim of the present work is to present a geometric formulation of higher order variational problems on arbitrary fibred manifolds. The problems of Engineering and Mathematical Physics whose natural formulation requires the use of second order differential invariants are classic, but it has been the recent advances in the theory of integrable non-linear partial differential equations and the consideration in Geometry of invariants of increasingly higher orders that has highlighted the interest...
On donne une description algébrique de l’ensemble des classes d’isomorphisme d’espaces symétriques affines connexes, simplement connexes et projectivement plats. On en déduit une classification des espaces symétriques affines connexes et projectivement plats et on détermine tous les espaces symétriques affines connexes admettant une transformation projective non affine.
The purpose of these survey notes is to give a presentation of a classical theorem of Nomizu [Nom54] that relates the invariant affine connections on reductive homogeneous spaces and nonassociative algebras.
Generalized planar curves (A-curves) are more general analogues of F-planar curves and geodesics. In particular, several well known geometries are described by more than one affinor. The best known example is the almost quaternionic geometry. A new approach to this topic (A-structures) was started in our earlier papers. In this paper we expand the concept of A-structures to projective A-structures.
We determine in the form of curves corresponding to strictly monotone functions as well as the components of affine connections for which any image of under a compact-free group of affinities containing the translation group is a geodesic with respect to . Special attention is paid to the case that contains many dilatations or that is a curve in . If is a curve in and is the translation group then we calculate not only the components of the curvature and the Weyl tensor but...