On totally umbilical surfaces in some Riemannian spaces
We investigate parallel hypersurfaces in the context of relative hypersurface geometry, in particular including the cases of Euclidean and Blaschke hypersurfaces. We describe the geometric relations between parallel hypersurfaces in terms of deformation operators, and we apply the results to the parallel deformation of special classes of hypersurfaces, e.g. quadrics and Weingarten hypersurfaces.
In this paper, we classify polynomial translation surfaces in Euclidean 3-space satisfying the Jacobi condition with respect to the Gaussian curvature, the mean curvature and the second Gaussian curvature.
In the four-dimensional pseudo-Euclidean space with neutral metric there are three types of rotational surfaces with two-dimensional axis - rotational surfaces of elliptic, hyperbolic or parabolic type. A surface whose mean curvature vector field is lightlike is said to be quasi-minimal. In this paper we classify all rotational quasi-minimal surfaces of elliptic, hyperbolic and parabolic type, respectively.
We introduce the new notion of pseudo--parallel real hypersurfaces in a complex projective space as real hypersurfaces satisfying a condition about the covariant derivative of the structure Jacobi operator in any direction of the maximal holomorphic distribution. This condition generalizes parallelness of the structure Jacobi operator. We classify this type of real hypersurfaces.