Parallel Kaehler Submanifolds of Hermitian Symmetric Spaces.
Kazumi Tsukada (1985)
Mathematische Zeitschrift
J. Deprez, R. Deszcz, L. Verstraelen (1988)
Annales de la Faculté des sciences de Toulouse : Mathématiques
Mangione, Vittorio (2003)
Balkan Journal of Geometry and its Applications (BJGA)
K. Galicki, H.B. Jr. Lawson (1988)
Mathematische Annalen
Claude LeBrun (1989)
Mathematische Annalen
Christos Baikoussis, Seon Mi Lyu, Jin Suh Young (1998)
Δελτίο της Ελληνικής Μαθηματικής Εταιρίας
Jürgen Berndt (1991)
Journal für die reine und angewandte Mathematik
Regina Castro Bolaño (1979)
Revista Matemática Hispanoamericana
Gilkey, Peter B. (1999)
Novi Sad Journal of Mathematics
Yildiz, Ahmet, Murathan, Cengizhan (2008)
Bulletin of the Malaysian Mathematical Sciences Society. Second Series
Sharma, Ramesh (1989)
International Journal of Mathematics and Mathematical Sciences
Jürgen Eichhorn, Thomas Friedrich (1997)
Banach Center Publications
We give an introduction into and exposition of Seiberg-Witten theory.
Vestislav Apostolov, Paul Gauduchon (2002)
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
We provide a local classification of selfdual Einstein riemannian four-manifolds admitting a positively oriented hermitian structure and characterize those which carry a hyperhermitian, non-hyperkähler structure compatible with the negative orientation. We show that selfdual Einstein 4-manifolds obtained as quaternionic quotients of and are hermitian.
David M J. Calderbank, Henrik Pedersen (2000)
Annales de l'institut Fourier
We study the Jones and Tod correspondence between selfdual conformal -manifolds with a conformal vector field and abelian monopoles on Einstein-Weyl -manifolds, and prove that invariant complex structures correspond to shear-free geodesic congruences. Such congruences exist in abundance and so provide a tool for constructing interesting selfdual geometries with symmetry, unifying the theories of scalar-flat Kähler metrics and hypercomplex structures with symmetry. We also show that in the presence...
J.E. Fornaess, K. Diederich (1982)
Manuscripta mathematica
Irena Čomić, Jovanka Nikić (1994)
Publications de l'Institut Mathématique
Čomić, Irena, Nikić, Jovanka (1994)
Publications de l'Institut Mathématique. Nouvelle Série
Irena Hinterleitner, Volodymyr Kiosak (2010)
Archivum Mathematicum
This work is devoted to the study of Einstein equations with a special shape of the energy-momentum tensor. Our results continue Stepanov’s classification of Riemannian manifolds according to special properties of the energy-momentum tensor to Kähler manifolds. We show that in this case the number of classes reduces.
Colber G. Oliveira, Nazira Arbex (1972)
Annales de l'I.H.P. Physique théorique
Bill Watson (2000)
Bollettino dell'Unione Matematica Italiana
Se la varietà base, , di una submersione quasi-Hermitiana, , è una -varietà e le fibre sono subvarietà superminimali, allora lo spazio totale, , è . Se la varietà base, , è Hermitiana e le fibre sono subvarietà bidimensionali e superminimali, allora lo spazio totale, , è Hermitiano.