On the existence of f-recurrent (LCS)n-manifolds.
In this paper we obtain a lower bound for the first Dirichlet eigenvalue of complete spacelike hypersurfaces in Lorentzian space in terms of mean curvature and the square length of the second fundamental form. This estimate is sharp for totally umbilical hyperbolic spaces in Lorentzian space. We also get a sufficient condition for spacelike hypersurface to have zero first eigenvalue.
In this paper, firstly we study some left invariant Riemannian metrics on para-hypercomplex 4-dimensional Lie groups. In each Lie group, the Levi-Civita connection and sectional curvature have been given explicitly. We also show these spaces have constant negative scalar curvatures. Then by using left invariant Riemannian metrics introduced in the first part, we construct some left invariant Randers metrics of Berwald type. The explicit formulas for computing flag curvature have been obtained in...
Classification of locally homogeneous affine connections in two dimensions is a nontrivial problem. (See [5] and [7] for two different versions of the solution.) Using a basic formula by B. Opozda, [7], we prove that all locally homogeneous torsion-less affine connections defined in open domains of a 2-dimensional manifold depend essentially on at most 4 parameters (see Theorem 2.4).