The structure of reachable sets for affine control systems induced by generalized Martinet sub-lorentzian metrics
In this paper we investigate analytic affine control systems q̇ = X + uY, u ∈ [a,b] , where X,Y is an orthonormal frame for a generalized Martinet sub-Lorentzian structure of order k of Hamiltonian type. We construct normal forms for such systems and, among other things, we study the connection between the presence of the singular trajectory starting at q0 on the boundary of the reachable set from q0 with the minimal number of analytic functions needed for describing the reachable set from q0.