Previous Page 2

Displaying 21 – 29 of 29

Showing per page

Properties of a hypothetical exotic complex structure on P 3

J. R. Brown (2007)

Mathematica Bohemica

We consider almost-complex structures on P 3 whose total Chern classes differ from that of the standard (integrable) almost-complex structure. E. Thomas established the existence of many such structures. We show that if there exists an “exotic” integrable almost-complex structures, then the resulting complex manifold would have specific Hodge numbers which do not vanish. We also give a necessary condition for the nondegeneration of the Frölicher spectral sequence at the second level.

Pseudo-symmetric contact 3-manifolds III

Jong Taek Cho, Jun-ichi Inoguchi, Ji-Eun Lee (2009)

Colloquium Mathematicae

A trans-Sasakian 3-manifold is pseudo-symmetric if and only if it is η-Einstein. In particular, a quasi-Sasakian 3-manifold is pseudo-symmetric if and only if it is a coKähler manifold or a homothetic Sasakian manifold. Some examples of non-Sasakian pseudo-symmetric contact 3-manifolds are exhibited.

Currently displaying 21 – 29 of 29

Previous Page 2