Prolongations of -structure to the tangent bundle of order 2.
We consider almost-complex structures on whose total Chern classes differ from that of the standard (integrable) almost-complex structure. E. Thomas established the existence of many such structures. We show that if there exists an “exotic” integrable almost-complex structures, then the resulting complex manifold would have specific Hodge numbers which do not vanish. We also give a necessary condition for the nondegeneration of the Frölicher spectral sequence at the second level.
A trans-Sasakian 3-manifold is pseudo-symmetric if and only if it is η-Einstein. In particular, a quasi-Sasakian 3-manifold is pseudo-symmetric if and only if it is a coKähler manifold or a homothetic Sasakian manifold. Some examples of non-Sasakian pseudo-symmetric contact 3-manifolds are exhibited.