Page 1

Displaying 1 – 16 of 16

Showing per page

Natural diagonal Riemannian almost product and para-Hermitian cotangent bundles

Simona-Luiza Druţă-Romaniuc (2012)

Czechoslovak Mathematical Journal

We obtain the natural diagonal almost product and locally product structures on the total space of the cotangent bundle of a Riemannian manifold. Studying the compatibility and the anti-compatibility relations between the determined structures and a natural diagonal metric, we find the Riemannian almost product (locally product) and the (almost) para-Hermitian cotangent bundles of natural diagonal lift type. Finally, we prove the characterization theorem for the natural diagonal (almost) para-Kählerian...

New hyper-Käahler structures on tangent bundles

Xuerong Qi, Linfen Cao, Xingxiao Li (2014)

Communications in Mathematics

Let ( M , g , J ) be an almost Hermitian manifold, then the tangent bundle T M carries a class of naturally defined almost hyper-Hermitian structures ( G , J 1 , J 2 , J 3 ) . In this paper we give conditions under which these almost hyper-Hermitian structures ( G , J 1 , J 2 , J 3 ) are locally conformal hyper-Kähler. As an application, a family of new hyper-structures is obtained on the tangent bundle of a complex space form. Furthermore, by restricting these almost hyper-Hermitian structures on the unit tangent sphere bundle T 1 M , we obtain a class of almost...

Nilpotent complex structures.

Luis A. Cordero, Marisa Fernández, Alfred Gray, Luis Ugarte (2001)

RACSAM

Este artículo presenta un panorama de algunos resultados recientes sobre estructuras complejas nilpotentes J definidas sobre nilvariedades compactas. Tratamos el problema de clasificación de nilvariedades compactas que admiten una tal J, el estudio de un modelo minimal de Dolbeault y su formalidad, y la construcción de estructuras complejas nilpotentes para las cuales la sucesión espectral de Frölicher no colapsa en el segundo término.

Non-associative geometry and discrete structure of spacetime

Alexander I. Nesterov, Lev Vasilʹevich Sabinin (2000)

Commentationes Mathematicae Universitatis Carolinae

A new mathematical theory, non-associative geometry, providing a unified algebraic description of continuous and discrete spacetime, is introduced.

Currently displaying 1 – 16 of 16

Page 1