A parametrization of the Weierstrass formulae and perturbation of complete minimal surfaces in R3 into the hyperbolic 3-space.
Let M be an n-dimensional complete immersed submanifold with parallel mean curvature vectors in an (n+p)-dimensional Riemannian manifold N of constant curvature c > 0. Denote the square of length and the length of the trace of the second fundamental tensor of M by S and H, respectively. We prove that if S ≤ 1/(n-1) H² + 2c, n ≥ 4, or S ≤ 1/2 H² + min(2,(3p-3)/(2p-3))c, n = 3, then M is umbilical. This result generalizes the Okumura-Hasanis...
We describe first the analytic structure of Riemann’s examples of singly-periodic minimal surfaces; we also characterize them as extensions of minimal annuli bounded by parallel straight lines between parallel planes. We then prove their uniqueness as solutions of the perturbed problem of a punctured annulus, and we present standard methods for determining finite total curvature periodic minimal surfaces and solving the period problems.
This paper is part of the autumn school on "Variational problems and higher order PDEs for affine hypersurfaces". We discuss affine Bernstein problems and complete constant mean curvature surfaces in equiaffine differential geometry.
We study curves in Sl(2,ℂ) whose tangent vectors have vanishing length with respect to the biinvariant conformal metric induced by the Killing form, so-called null curves. We establish differential invariants of them that resemble infinitesimal arc length, curvature and torsion of ordinary curves in Euclidean 3-space. We discuss various differential-algebraic representation formulas for null curves. One of them, a modification of the Bianchi-Small formula, gives an Sl(2,ℂ)-equivariant bijection...
We prove the existence of a not homotopically trivial minimal sphere in a 3-manifold with boundary, obtained by deleting an open connected subset from a compact Riemannian oriented 3-manifold with boundary, having trivial second homotopy group.