Loading [MathJax]/extensions/MathZoom.js
We study the ramification of the Gauss map of complete minimal surfaces in on annular ends. This is a continuation of previous work of Dethloff-Ha (2014), which we extend here to targets of higher dimension.
We characterize real hypersurfaces with constant holomorphic sectional curvature of a non flat complex space form as the ones which have constant totally real sectional curvature.
Soit ; chaque métrique complète à courbure sur la sphère à trous admet une unique réalisation comme métrique induite sur une surface plongée dans dont le bord à l’infini est une réunion disjointe de cercles. De manière duale, chaque métrique complète à courbure sans géodésique fermée de longueur se réalise de manière unique comme troisième forme fondamentale d’une surface plongée dont le bord à l’infini est une réunion de cercles.
In this paper, we deal with -dimensional complete linear Weingarten spacelike submanifolds immersed with parallel normalized mean curvature vector field and flat normal bundle in a locally symmetric semi-Riemannian space of index , which obeys some curvature constraints (such an ambient space can be regarded as an extension of a semi-Riemannian space form). Under appropriate hypothesis, we are able to prove that such a spacelike submanifold is either totally umbilical or isometric to an isoparametric...
First we prove a general algebraic lemma. By applying the algebraic lemma we establish a general inequality involving the Ricci curvature of an arbitrary real hypersurface in a complex hyperbolic space. We also classify real hypersurfaces with constant principal curvatures which satisfy the equality case of the inequality.
We consider the decomposition of a compact-type symmetric space into a product of factors and show that the rank-one factors, when considered as totally geodesic submanifolds of the space, are isolated from inequivalent minimal submanifolds.
Currently displaying 1 –
19 of
19