The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Page 1

Displaying 1 – 10 of 10

Showing per page

Simplicial nonpositive curvature

Tadeusz Januszkiewicz, Jacek Świątkowski (2006)

Publications Mathématiques de l'IHÉS

We introduce a family of conditions on a simplicial complex that we call local k-largeness (k≥6 is an integer). They are simply stated, combinatorial and easily checkable. One of our themes is that local 6-largeness is a good analogue of the non-positive curvature: locally 6-large spaces have many properties similar to non-positively curved ones. However, local 6-largeness neither implies nor is implied by non-positive curvature of the standard metric. One can think of these results as a higher...

Sur la rigidité de polyèdres hyperboliques en dimension  3 : cas de volume fini, cas hyperidéal, cas fuchsien

Mathias Rousset (2004)

Bulletin de la Société Mathématique de France

Un polyèdre hyperbolique semi-idéal est un polyèdre dont les sommets sont dans l’espace hyperbolique 3 ou à l’infini. Un polyèdre hyperbolique hyperidéal est, dans le modèle projectif, l’intersection de 3 avec un polyèdre projectif dont les sommets sont tous en dehors de 3 et dont toutes les arêtes rencontrent 3 . Nous classifions les polyèdres semi-idéaux en fonction de leur métrique duale, d’après les résultats de Rivin dans [8] (écrit avec C.D.Hodgson) et [7]. Nous utilisons ce résultat pour retrouver...

Surfaces in 𝕊 3 and 3 via spinors

Bertrand Morel (2004/2005)

Séminaire de théorie spectrale et géométrie

We generalize the spinorial characterization of isometric immersions of surfaces in 3 given by T. Friedrich to surfaces in 𝕊 3 and 3 . The main argument is the interpretation of the energy-momentum tensor associated with a special spinor field as a second fundamental form. It turns out that such a characterization of isometric immersions in terms of a special section of the spinor bundle also holds in the case of hypersurfaces in the Euclidean 4 -space.

Currently displaying 1 – 10 of 10

Page 1