-energy of a curve on LIP-manifolds and on general metric spaces.
In this work we give a characterization of the projective invariant pseudometric , introduced by H. Wu, for a particular class of real -manifolds; in view of this result, we study the group of projective transformations for the same class of manifolds and we determine the integrated pseudodistance of in open convex regular cones of , endowed with the characteristic metric.
The aim of this work, which continues Part I with the same title, is to study a class of projective transformations of open, convex, regular cones in and to prove a structure theorem for affine transformations of a restricted class of cones; we conclude with a version of the Schwarz Lemma holding for affine transformations.
The projective Finsler metrizability problem deals with the question whether a projective-equivalence class of sprays is the geodesic class of a (locally or globally defined) Finsler function. This paper describes an approach to the problem using an analogue of the multiplier approach to the inverse problem in Lagrangian mechanics.