2- II Inégalités fortes de Morse
On a 4-dimensional anti-Kähler manifold, its zero scalar curvature implies that its Weyl curvature vanishes and vice versa. In particular any 4-dimensional anti-Kähler manifold with zero scalar curvature is flat.
This is a review of the relation between supersymmetric non-linear sigma models and target space geometry. In particular, we report on the derivation of generalized Kähler geometry from sigma models with additional spinorial superfields. Some of the results reviewed are: Generalized complex geometry from sigma models in the Lagrangian formulation; Coordinatization of generalized Kähler geometry in terms of chiral, twisted chiral and semi-chiral superfields; Generalized Kähler geometry from sigma...
Introduction. For bounded domains in satisfying the cone condition there are many embedding and module structure theorem for Sobolev spaces which are of great importance in solving partial differential equations. Unfortunately, most of them are wrong on arbitrary unbounded domains or on open manifolds. On the other hand, just these theorems play a decisive role in foundations of nonlinear analysis on open manifolds and in solving partial differential equations. This was pointed out by the author...
We present a stable class of spacetimes which satisfy the conditions of the singularity theorem of Hawking & Penrose (1970), and which contain naked singularities. This offers counterexamples to a geometric version of the strong cosmic censorship hypothesis.