The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
We give different notions of Liouville forms, generalized Liouville forms and vertical Liouville forms with respect to a locally trivial fibration π:E → M. These notions are linked with those of semi-basic forms and vertical forms. We study the infinitesimal automorphisms of these forms; we also investigate the relations with momentum maps.
The structure of filtered algebras of Grothendieck's differential operators on a smooth fat point in a curve and graded Poisson algebras of their principal symbols is explicitly determined. A related infinitesimal-birational duality realized by a Springer type resolution of singularities and the Fourier transformation is presented. This algebro-geometrical duality is quantized in appropriate sense and its quantum origin is explained.
We prove that the well-known Harder-Narsimhan filtration theory for bundles over a complex curve and the theory of optimal destabilizing -parameter subgroups are the same thing when considered in the gauge theoretical framework.Indeed, the classical concepts of the GIT theory are still effective in this context and the Harder-Narasimhan filtration can be viewed as a limit object for the action of the gauge group, in the direction of an optimal destabilizing vector. This vector appears as an extremal...
Orbits of complete families of vector fields on a subcartesian space are shown to be
smooth manifolds. This allows a description of the structure of the reduced phase space
of a Hamiltonian system in terms of the reduced Poisson algebra. Moreover, one can give a
global description of smooth geometric structures on a family of manifolds, which form a
singular foliation of a subcartesian space, in terms of objects defined on the
corresponding family of vector fields. Stratified...
Currently displaying 1 –
7 of
7