Displaying 361 – 380 of 400

Showing per page

Universal spaces in the theory of transfinite dimension, II

Wojciech Olszewski (1994)

Fundamenta Mathematicae

We construct a family of spaces with “nice” structure which is universal in the class of all compact metrizable spaces of large transfinite dimension ω 0 , or, equivalently, of small transfinite dimension ω 0 ; that is, the family consists of compact metrizable spaces whose transfinite dimension is ω 0 , and every compact metrizable space with transfinite dimension ω 0 is embeddable in a space of the family. We show that the least possible cardinality of such a universal family is equal to the least possible...

Weak extent in normal spaces

Ronnie Levy, Mikhail Matveev (2005)

Commentationes Mathematicae Universitatis Carolinae

If X is a space, then the weak extent we ( X ) of X is the cardinal min { α : If 𝒰 is an open cover of X , then there exists A X such that | A | = α and St ( A , 𝒰 ) = X } . In this note, we show that if X is a normal space such that | X | = 𝔠 and we ( X ) = ω , then X does not have a closed discrete subset of cardinality 𝔠 . We show that this result cannot be strengthened in ZFC to get that the extent of X is smaller than 𝔠 , even if the condition that we ( X ) = ω is replaced by the stronger condition that X is separable.

κ-compactness, extent and the Lindelöf number in LOTS

David Buhagiar, Emmanuel Chetcuti, Hans Weber (2014)

Open Mathematics

We study the behaviour of ℵ-compactness, extent and Lindelöf number in lexicographic products of linearly ordered spaces. It is seen, in particular, that for the case that all spaces are bounded all these properties behave very well when taking lexicographic products. We also give characterizations of these notions for generalized ordered spaces.

ω H-sets and cardinal invariants

Alessandro Fedeli (1998)

Commentationes Mathematicae Universitatis Carolinae

A subset A of a Hausdorff space X is called an ω H-set in X if for every open family 𝒰 in X such that A 𝒰 there exists a countable subfamily 𝒱 of 𝒰 such that A { V ¯ : V 𝒱 } . In this paper we introduce a new cardinal function t s θ and show that | A | 2 t s θ ( X ) ψ c ( X ) for every ω H-set A of a Hausdorff space X .

Currently displaying 361 – 380 of 400