Cardinal invariants of bitopological spaces
Cardinal invariants of paratopological groups
We show that a regular totally ω-narrow paratopological group G has countable index of regularity, i.e., for every neighborhood U of the identity e of G, we can find a neighborhood V of e and a countable family of neighborhoods of e in G such that ∩W∈γ VW−1⊆ U. We prove that every regular (Hausdorff) totally !-narrow paratopological group is completely regular (functionally Hausdorff). We show that the index of regularity of a regular paratopological group is less than or equal to the weak Lindelöf...
Cardinal realcompactness
Cardinal sequences and Cohen real extensions
We show that if we add any number of Cohen reals to the ground model then, in the generic extension, a locally compact scattered space has at most levels of size ω. We also give a complete ZFC characterization of the cardinal sequences of regular scattered spaces. Although the classes of regular and of 0-dimensional scattered spaces are different, we prove that they have the same cardinal sequences.
Cardinal sequences of length < ω₂ under GCH
Let (α) denote the class of all cardinal sequences of length α associated with compact scattered spaces (or equivalently, superatomic Boolean algebras). Also put . We show that f ∈ (α) iff for some natural number n there are infinite cardinals and ordinals such that and where each . Under GCH we prove that if α < ω₂ then (i) ; (ii) if λ > cf(λ) = ω, ; (iii) if cf(λ) = ω₁, ; (iv) if cf(λ) > ω₁, . This yields a complete characterization of the classes (α) for all α < ω₂,...
Cardinalities and ranks of -bases in topological spaces
Cardinalities of metric completions
Cellularity and the index of narrowness in topological groups
We study relations between the cellularity and index of narrowness in topological groups and their -modifications. We show, in particular, that the inequalities and hold for every topological group and every cardinal , where denotes the underlying group endowed with the -modification of the original topology of and is the index of narrowness of the group . Also, we find some bounds for the complexity of continuous real-valued functions on an arbitrary -narrow group understood...
Cellularity of a space of subgroups of a discrete group
Given a discrete group , we consider the set of all subgroups of endowed with topology of pointwise convergence arising from the standard embedding of into the Cantor cube . We show that the cellularity for every abelian group , and, for every infinite cardinal , we construct a group with .
Cellularity of free products of Boolean algebras (or topologies)
The aim this paper is to present an answer to Problem 1 of Monk [10], [11]. We do this by proving in particular that if μ is a strong limit singular cardinal, and then there are Boolean algebras such that . Further we improve this result, deal with the method and the necessity of the assumptions. In particular we prove that if is a ccc Boolean algebra and then satisfies the λ-Knaster condition (using the “revised GCH theorem”).
Chain conditions and continuous mappings on
Chain conditions and products
Characterization of realcompactness and hereditary realcompactness in the class of normal nodec (submaximal) spaces
Is it true in ZFC that every normal submaximal space of non-measurable cardinality is hereditarily realcompact? This question (posed by O. T. Alas et al. (2002)) is given a complete affirmative answer, for a wider class of spaces. In fact, this answer is a part of a bi-conditional statement: A normal nodec space X is hereditarily realcompact if and only if it is realcompact if and only if every closed discrete (or nowhere dense) subset of X has non-measurable cardinality.
Classifying stationary sets: a survey
Closed discrete subsets of separable spaces and relative versions of normality, countable paracompactness and property
In this paper we show that a separable space cannot include closed discrete subsets which have the cardinality of the continuum and satisfy relative versions of any of the following topological properties: normality, countable paracompactness and property . It follows that it is consistent that closed discrete subsets of a separable space which are also relatively normal (relatively countably paracompact, relatively ) in are necessarily countable. There are, however, consistent examples of...
Closure, interior, and union in finite topological spaces
Cofinal families in certain function spaces
Collectionwise Hausdorffness at limit cardinals
Coloring Cantor sets and resolvability of pseudocompact spaces
Let us denote by the statement that , i.e. the Baire space of weight , has a coloring with colors such that every homeomorphic copy of the Cantor set in picks up all the colors. We call a space -regular if it is Hausdorff and for every nonempty open set in there is a nonempty open set such that . We recall that a space is called feebly compact if...