The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
We answer a question of I. Juhasz by showing that MA CH does not imply that every compact ccc space of countable -character is separable. The space constructed has the additional property that it does not map continuously onto .
Topologies τ₁ and τ₂ on a set X are called T₁-complementary if τ₁ ∩ τ₂ = X∖F: F ⊆ X is finite ∪ ∅ and τ₁∪τ₂ is a subbase for the discrete topology on X. Topological spaces and are called T₁-complementary provided that there exists a bijection f: X → Y such that and are T₁-complementary topologies on X. We provide an example of a compact Hausdorff space of size which is T₁-complementary to itself ( denotes the cardinality of the continuum). We prove that the existence of a compact Hausdorff...
The completion of a Suslin tree is shown to be a consistent example of a Corson compact L-space when endowed with the coarse wedge topology. The example has the further properties of being zero-dimensional and monotonically normal.
Under 𝔭 = 𝔠, we prove that it is possible to endow the free abelian group of cardinality 𝔠 with a group topology that makes its square countably compact. This answers a question posed by Madariaga-Garcia and Tomita and by Tkachenko. We also prove that there exists a Wallace semigroup (i.e., a countably compact both-sided cancellative topological semigroup which is not a topological group) whose square is countably compact. This answers a question posed by Grant.
It is independent of the usual (ZFC) axioms of set theory whether every collectionwise Hausdorff tree is either metrizable or has an uncountable chain. We show that even if we add “or has an Aronszajn subtree,” the statement remains ZFC-independent. This is done by constructing a tree as in the title, using the set-theoretic hypothesis , which holds in Gödel’s Constructible Universe.
In 1990, Comfort asked Question 477 in the survey book “Open Problems in Topology”: Is there, for every (not necessarily infinite) cardinal number , a topological group G such that is countably compact for all cardinals γ < α, but is not countably compact?
Hart and van Mill showed in 1991 that α = 2 answers this question affirmatively under . Recently, Tomita showed that every finite cardinal answers Comfort’s question in the affirmative, also from . However, the question has remained...
We prove an analogue to Dordal’s result in P.L. Dordal, A model in which the base-matrix tree cannot have cofinal branches, J. Symbolic Logic 52 (1980), 651–664. He obtained a model of ZFC in which there is a tree -base for with no branches yet of height . We establish that this is also possible for using a natural modification of Mathias forcing.
We define two cardinal invariants of the continuum which arise naturally from combinatorially and topologically appealing properties of almost disjoint families of sets of the natural numbers. These are the never soft and never countably paracompact numbers. We show that these cardinals must both be equal to under the effective weak diamond principle , answering questions of da Silva S.G., On the presence of countable paracompactness, normality and property in spaces from almost disjoint families,...
We consider the question: when does a Ψ-space satisfy property (a)? We show that if then the Ψ-space Ψ(A) satisfies property (a), but in some Cohen models the negation of CH holds and every uncountable Ψ-space fails to satisfy property (a). We also show that in a model of Fleissner and Miller there exists a Ψ-space of cardinality which has property (a). We extend a theorem of Matveev relating the existence of certain closed discrete subsets with the failure of property (a).
A space is called connectifiable if it can be densely embedded in a connected Hausdorff space. Let be the following statement: “a perfect -space with no more than clopen subsets is connectifiable if and only if no proper nonempty clopen subset of is feebly compact". In this note we show that neither nor is provable in ZFC.
Given a topological space ⟨X,⟩ ∈ M, an elementary submodel of set theory, we define to be X ∩ M with topology generated by . Suppose is homeomorphic to the irrationals; must ? We have partial results. We also answer a question of Gruenhage by showing that if is homeomorphic to the “Long Cantor Set”, then .
Under some very strong set-theoretic hypotheses, hereditarily normal spaces (also referred to as T₅ spaces) that are locally compact and hereditarily collectionwise Hausdorff can have a highly simplified structure. This paper gives a structure theorem (Theorem 1) that applies to all such ω₁-compact spaces and another (Theorem 4) to all such spaces of Lindelöf number ≤ ℵ₁. It also introduces an axiom (Axiom F) on crowding of functions, with consequences (Theorem 3) for the crowding of countably compact...
We investigate the question of the title. While it is immediate that CH yields a positive answer we discover that the situation under the negation of CH holds some surprises.
Currently displaying 1 –
19 of
19