Displaying 21 – 40 of 44

Showing per page

Nonnormality of remainders of some topological groups

Aleksander V. Arhangel'skii, J. van Mill (2016)

Commentationes Mathematicae Universitatis Carolinae

It is known that every remainder of a topological group is Lindelöf or pseudocompact. Motivated by this result, we study in this paper when a topological group G has a normal remainder. In a previous paper we showed that under mild conditions on G , the Continuum Hypothesis implies that if the Čech-Stone remainder G * of G is normal, then it is Lindelöf. Here we continue this line of investigation, mainly for the case of precompact groups. We show that no pseudocompact group, whose weight is uncountable...

Nonseparable Radon measures and small compact spaces

Grzegorz Plebanek (1997)

Fundamenta Mathematicae

We investigate the problem if every compact space K carrying a Radon measure of Maharam type κ can be continuously mapped onto the Tikhonov cube [ 0 , 1 ] κ (κ being an uncountable cardinal). We show that for κ ≥ cf(κ) ≥ κ this holds if and only if κ is a precaliber of measure algebras. Assuming that there is a family of ω 1 null sets in 2 ω 1 such that every perfect set meets one of them, we construct a compact space showing that the answer to the above problem is “no” for κ = ω. We also give alternative proofs...

Normal spaces and the Lusin-Menchoff property

Pavel Pyrih (1997)

Mathematica Bohemica

We study the relation between the Lusin-Menchoff property and the F σ -“semiseparation” property of a fine topology in normal spaces. Three examples of normal topological spaces having the F σ -“semiseparation” property without the Lusin-Menchoff property are given. A positive result is obtained in the countable compact space.

Currently displaying 21 – 40 of 44