Displaying 21 – 40 of 141

Showing per page

Sequential compactness vs. countable compactness

Angelo Bella, Peter Nyikos (2010)

Colloquium Mathematicae

The general question of when a countably compact topological space is sequentially compact, or has a nontrivial convergent sequence, is studied from the viewpoint of basic cardinal invariants and small uncountable cardinals. It is shown that the small uncountable cardinal 𝔥 is both the least cardinality and the least net weight of a countably compact space that is not sequentially compact, and that it is also the least hereditary Lindelöf degree in most published models. Similar results, some definitive,...

Sequential completeness of subspaces of products of two cardinals

Roman Frič, Nobuyuki Kemoto (1999)

Czechoslovak Mathematical Journal

Let κ be a cardinal number with the usual order topology. We prove that all subspaces of κ 2 are weakly sequentially complete and, as a corollary, all subspaces of ω 1 2 are sequentially complete. Moreover we show that a subspace of ( ω 1 + 1 ) 2 need not be sequentially complete, but note that X = A × B is sequentially complete whenever A and B are subspaces of κ .

Sequential convergence in C p ( X )

David H. Fremlin (1994)

Commentationes Mathematicae Universitatis Carolinae

I discuss the number of iterations of the elementary sequential closure operation required to achieve the full sequential closure of a set in spaces of the form C p ( X ) .

Sequential convergences on Boolean algebras defined by systems of maximal filters

Roman Frič, Ján Jakubík (2001)

Czechoslovak Mathematical Journal

We study sequential convergences defined on a Boolean algebra by systems of maximal filters. We describe the order properties of the system of all such convergences. We introduce the category of 2-generated convergence Boolean algebras and generalize the construction of Novák sequential envelope to such algebras.

Sequential + separable vs sequentially separable and another variation on selective separability

Angelo Bella, Maddalena Bonanzinga, Mikhail Matveev (2013)

Open Mathematics

A space X is sequentially separable if there is a countable D ⊂ X such that every point of X is the limit of a sequence of points from D. Neither “sequential + separable” nor “sequentially separable” implies the other. Some examples of this are presented and some conditions under which one of the two implies the other are discussed. A selective version of sequential separability is also considered.

Currently displaying 21 – 40 of 141