On elementary maps
Some aspects of extended frames are studied, namely, the behaviour of ideals, covers, admissible systems of covers and uniformities.
We consider the families of all subspaces of size ω₁ of (or of a compact zero-dimensional space X of weight ω₁ in general) which are normal, have the Lindelöf property or are closed under limits of convergent ω₁-sequences. Various relations among these families modulo the club filter in are shown to be consistently possible. One of the main tools is dealing with a subspace of the form X ∩ M for an elementary submodel M of size ω₁. Various results with this flavor are obtained. Another tool used...
Fixed circle problems belong to a realm of problems in metric fixed point theory. Specifically, it is a problem of finding self mappings which remain invariant at each point of the circle in the space. Recently this problem is well studied in various metric spaces. Our present work is in the domain of the extension of this line of research in the context of fuzzy metric spaces. For our purpose, we first define the notions of a fixed circle and of a fixed Cassini curve then determine suitable conditions...
Four new operators, which are analogous of the topological operators interior and closure, are defined. Some of their basic properties are studied. Their geometrical interpretations are given.
Following Kombarov we say that is -sequential, for , if for every non-closed subset of there is such that and . This suggests the following definition due to Comfort and Savchenko, independently: is a FU()-space if for every and every there is a function such that . It is not hard to see that ( denotes the Rudin–Keisler order) every -sequential space is -sequential every FU()-space is a FU()-space. We generalize the spaces to construct examples of -sequential...
In this paper the concept of fuzzy nearly C-compactness is introduced in fuzzy topological spaces and fuzzy bitopological spaces. Several characterizations and some interesting properties of these spaces are discussed. The properties of fuzzy almost continuous and fuzzy almost open functions are also discussed.
We describe properties of subalgebras and BCC-ideals in BCC-algebras with a topology induced by a family of fuzzy sets.