Displaying 121 – 140 of 153

Showing per page

Almost disjoint families and “never” cardinal invariants

Charles Morgan, Samuel Gomes da Silva (2009)

Commentationes Mathematicae Universitatis Carolinae

We define two cardinal invariants of the continuum which arise naturally from combinatorially and topologically appealing properties of almost disjoint families of sets of the natural numbers. These are the never soft and never countably paracompact numbers. We show that these cardinals must both be equal to ω 1 under the effective weak diamond principle ( ω , ω , < ) , answering questions of da Silva S.G., On the presence of countable paracompactness, normality and property ( a ) in spaces from almost disjoint families,...

Almost disjoint families and property (a)

Paul Szeptycki, Jerry Vaughan (1998)

Fundamenta Mathematicae

We consider the question: when does a Ψ-space satisfy property (a)? We show that if | A | < p then the Ψ-space Ψ(A) satisfies property (a), but in some Cohen models the negation of CH holds and every uncountable Ψ-space fails to satisfy property (a). We also show that in a model of Fleissner and Miller there exists a Ψ-space of cardinality p which has property (a). We extend a theorem of Matveev relating the existence of certain closed discrete subsets with the failure of property (a).

An independency result in connectification theory

Alessandro Fedeli, Attilio Le Donne (1999)

Commentationes Mathematicae Universitatis Carolinae

A space is called connectifiable if it can be densely embedded in a connected Hausdorff space. Let ψ be the following statement: “a perfect T 3 -space X with no more than 2 𝔠 clopen subsets is connectifiable if and only if no proper nonempty clopen subset of X is feebly compact". In this note we show that neither ψ nor ¬ ψ is provable in ZFC.

An irrational problem

Franklin D. Tall (2002)

Fundamenta Mathematicae

Given a topological space ⟨X,⟩ ∈ M, an elementary submodel of set theory, we define X M to be X ∩ M with topology generated by U M : U M . Suppose X M is homeomorphic to the irrationals; must X = X M ? We have partial results. We also answer a question of Gruenhage by showing that if X M is homeomorphic to the “Long Cantor Set”, then X = X M .

Aposyndesis in

José del Carmen Alberto-Domínguez, Gerardo Acosta, Maira Madriz-Mendoza (2023)

Commentationes Mathematicae Universitatis Carolinae

We consider the Golomb and the Kirch topologies in the set of natural numbers. Among other results, we show that while with the Kirch topology every arithmetic progression is aposyndetic, in the Golomb topology only for those arithmetic progressions P ( a , b ) with the property that every prime number that divides a also divides b , it follows that being connected, being Brown, being totally Brown, and being aposyndetic are all equivalent. This characterizes the arithmetic progressions which are aposyndetic...

Applications of maximal μ-open sets in generalized topology and quasi topology

Bishwambhar Roy, Ritu Sen (2013)

Discussiones Mathematicae - General Algebra and Applications

In this paper, some fundamental properties of maximal μ-open sets such as decomposition theorem for a maximal μ-open set, are given in a generalized topological space. Some basic properties of intersection of maximal μ-open sets are established, cohere the law of μ-radical μ-closure in a quasi topological space is obtained, among the other things.

Currently displaying 121 – 140 of 153