Page 1

Displaying 1 – 6 of 6

Showing per page

Bi-Lipschitz embeddings of hyperspaces of compact sets

Jeremy T. Tyson (2005)

Fundamenta Mathematicae

We study the bi-Lipschitz embedding problem for metric compacta hyperspaces. We observe that the compacta hyperspace K(X) of any separable, uniformly disconnected metric space X admits a bi-Lipschitz embedding in ℓ². If X is a countable compact metric space containing at most n nonisolated points, there is a Lipschitz embedding of K(X) in n + 1 ; in the presence of an additional convergence condition, this embedding may be chosen to be bi-Lipschitz. By way of contrast, the hyperspace K([0,1]) of the...

Currently displaying 1 – 6 of 6

Page 1