Page 1 Next

Displaying 1 – 20 of 25

Showing per page

The algebraic dimension of linear metric spaces and Baire properties of their hyperspaces.

Taras Banakh, Anatolij Plichko (2006)

RACSAM

Answering a question of Halbeisen we prove (by two different methods) that the algebraic dimension of each infinite-dimensional complete linear metric space X equals the size of X. A topological method gives a bit more: the algebraic dimension of a linear metric space X equals |X| provided the hyperspace K(X) of compact subsets of X is a Baire space. Studying the interplay between Baire properties of a linear metric space X and its hyperspace, we construct a hereditarily Baire linear metric space...

The AR-Property of the spaces of closed convex sets

Katsuro Sakai, Masato Yaguchi (2006)

Colloquium Mathematicae

Let C o n v H ( X ) , C o n v A W ( X ) and C o n v W ( X ) be the spaces of all non-empty closed convex sets in a normed linear space X admitting the Hausdorff metric topology, the Attouch-Wets topology and the Wijsman topology, respectively. We show that every component of C o n v H ( X ) and the space C o n v A W ( X ) are AR. In case X is separable, C o n v W ( X ) is locally path-connected.

The dimension of hyperspaces of non-metrizable continua

Wojciech Stadnicki (2012)

Colloquium Mathematicae

We prove that, for any Hausdorff continuum X, if dim X ≥ 2 then the hyperspace C(X) of subcontinua of X is not a C-space; if dim X = 1 and X is hereditarily indecomposable then either dim C(X) = 2 or C(X) is not a C-space. This generalizes some results known for metric continua.

The hyperspace of finite subsets of a stratifiable space

Robert Cauty, Bao-Lin Guo, Katsuro Sakai (1995)

Fundamenta Mathematicae

It is shown that the hyperspace of non-empty finite subsets of a space X is an ANR (an AR) for stratifiable spaces if and only if X is a 2-hyper-locally-connected (and connected) stratifiable space.

The nonexistence of expansive homeomorphisms of chainable continua

Hisao Kato (1996)

Fundamenta Mathematicae

A homeomorphism f:X → X of a compactum X with metric d is expansive if there is c > 0 such that if x, y ∈ X and x ≠ y, then there is an integer n ∈ ℤ such that d ( f n ( x ) , f n ( y ) ) > c . In this paper, we prove that if a homeomorphism f:X → X of a continuum X can be lifted to an onto map h:P → P of the pseudo-arc P, then f is not expansive. As a corollary, we prove that there are no expansive homeomorphisms on chainable continua. This is an affirmative answer to one of Williams’ conjectures.

The set functions 𝓣 and 𝒦 and irreducible continua

Leobardo Fernández, Sergio Macías (2010)

Colloquium Mathematicae

We study the set functions 𝓣 and 𝒦 on irreducible continua. We present several properties of these functions when defined on irreducible continua. In particular, we characterize the class of irreducible continua for which these functions are continuous. We also characterize the class of 𝒦-symmetric irreducible continua.

The space of ANR’s in n

Tadeusz Dobrowolski, Leonard Rubin (1994)

Fundamenta Mathematicae

The hyperspaces A N R ( n ) and A R ( n ) in 2 n ( n 3 ) consisting respectively of all compact absolute neighborhood retracts and all compact absolute retracts are studied. It is shown that both have the Borel type of absolute G δ σ δ -spaces and that, indeed, they are not F σ δ σ -spaces. The main result is that A N R ( n ) is an absorber for the class of all absolute G δ σ δ -spaces and is therefore homeomorphic to the standard model space Ω 3 of this class.

The Spaces of Closed Convex Sets in Euclidean Spaces with the Fell Topology

Katsuro Sakai, Zhongqiang Yang (2007)

Bulletin of the Polish Academy of Sciences. Mathematics

Let C o n v F ( ) be the space of all non-empty closed convex sets in Euclidean space ℝ ⁿ endowed with the Fell topology. We prove that C o n v F ( ) × Q for every n > 1 whereas C o n v F ( ) × .

The structure of atoms (hereditarily indecomposable continua)

R. Ball, J. Hagler, Yaki Sternfeld (1998)

Fundamenta Mathematicae

Let X be an atom (= hereditarily indecomposable continuum). Define a metric ϱ on X by letting ϱ ( x , y ) = W ( A x y ) where A x , y is the (unique) minimal subcontinuum of X which contains x and y and W is a Whitney map on the set of subcontinua of X with W(X) = 1. We prove that ϱ is an ultrametric and the topology of (X,ϱ) is stronger than the original topology of X. The ϱ-closed balls C(x,r) = y ∈ X:ϱ ( x,y) ≤ r coincide with the subcontinua of X. (C(x,r) is the unique subcontinuum of X which contains x and has Whitney value...

Currently displaying 1 – 20 of 25

Page 1 Next