Making holes in the cone, suspension and hyperspaces of some continua
A connected topological space is unicoherent provided that if where and are closed connected subsets of , then is connected. Let be a unicoherent space, we say that makes a hole in if is not unicoherent. In this work the elements that make a hole to the cone and the suspension of a metric space are characterized. We apply this to give the classification of the elements of hyperspaces of some continua that make them hole.