Loading [MathJax]/extensions/MathZoom.js
The present paper aims to furnish simple proofs of some recent results about selections on product spaces obtained by García-Ferreira, Miyazaki and Nogura. The topic is discussed in the framework of a result of Katětov about complete normality of products. Also, some applications for products with a countably compact factor are demonstrated as well.
We extend van Mill-Wattel's results and show that each countably compact completely regular space with a continuous selection on couples is suborderable. The result extends also to pseudocompact spaces if they are either scattered, first countable, or connected. An infinite pseudocompact topological group with such a continuous selection is homeomorphic to the Cantor set. A zero-selection is a selection on the hyperspace of closed sets which chooses always an isolated point of a set. Extending Fujii-Nogura...
We answer a question of van Mill and Wattel by showing that there is a separable locally compact space which admits a continuous weak selection but is not weakly orderable. Furthermore, we show that a separable space which admits a continuous weak selection can be covered by two weakly orderable spaces. Finally, we give a partial answer to a question of Gutev and Nogura by showing that a separable space which admits a continuous weak selection admits a continuous selection for all finite sets.
Every (continuous) selection for the non-empty 2-point subsets of a space X naturally defines an interval-like topology on X. In the present paper, we demonstrate that, for a second-countable zero-dimensional space X, this topology may fail to be first-countable at some (or, even any) point of X. This settles some problems stated in [7].
We show that if is an uncountable AD (almost disjoint) family of subsets of then the space does not admit a continuous selection; moreover, if is maximal then does not even admit a continuous selection on pairs, answering thus questions of T. Nogura.
We determine the size levels for any function on the hyperspace of an arc as follows. Assume Z is a continuum and consider the following three conditions: 1) Z is a planar AR; 2) cut points of Z have component number two; 3) any true cyclic element of Z contains at most two cut points of Z. Then any size level for an arc satisfies 1)-3) and conversely, if Z satisfies 1)-3), then Z is a diameter level for some arc.
Let K(X) be the hyperspace of a compact metric space endowed with the Hausdorff metric. We give a general theorem showing that certain subsets of K(X) are true sets.
Let (X,f) be a dynamical system. In general the set of all ω-limit sets of f is not closed in the hyperspace of closed subsets of X. In this paper we study the case when X is a graph, and show that the family of ω-limit sets of a graph map is closed with respect to the Hausdorff metric.
We investigate striped structures of stable and unstable sets of expansive homeomorphisms and continuum-wise expansive homeomorphisms. The following theorem is proved: if f : X → X is an expansive homeomorphism of a compact metric space X with dim X > 0, then the decompositions and of X into stable and unstable sets of f respectively are uncountable, and moreover there is σ (= s or u) and ϱ > 0 such that there is a Cantor set C in X with the property that for each x ∈ C, contains a nondegenerate...
By , , we denote the -th symmetric product of a metric space as the space of the non-empty finite subsets of with at most elements endowed with the Hausdorff metric . In this paper we shall describe that every isometry from the -th symmetric product into itself is induced by some isometry from into itself, where is either the Euclidean space or the sphere with the usual metrics. Moreover, we study the -th symmetric product of the Euclidean space up to bi-Lipschitz equivalence and...
Currently displaying 1 –
18 of
18