Displaying 341 – 360 of 1011

Showing per page

Hyperspaces of Finite Sets in Universal Spaces for Absolute Borel Classes

Kotaro Mine, Katsuro Sakai, Masato Yaguchi (2005)

Bulletin of the Polish Academy of Sciences. Mathematics

By Fin(X) (resp. F i n k ( X ) ), we denote the hyperspace of all non-empty finite subsets of X (resp. consisting of at most k points) with the Vietoris topology. Let ℓ₂(τ) be the Hilbert space with weight τ and f ( τ ) the linear span of the canonical orthonormal basis of ℓ₂(τ). It is shown that if E = f ( τ ) or E is an absorbing set in ℓ₂(τ) for one of the absolute Borel classes α ( τ ) and α ( τ ) of weight ≤ τ (α > 0) then Fin(E) and each F i n k ( E ) are homeomorphic to E. More generally, if X is a connected E-manifold then Fin(X) is homeomorphic...

Hyperspaces of Peano continua of euclidean spaces

Helma Gladdines, Jan van Mill (1993)

Fundamenta Mathematicae

If X is a space then L(X) denotes the subspace of C(X) consisting of all Peano (sub)continua. We prove that for n ≥ 3 the space L ( n ) is homeomorphic to B , where B denotes the pseudo-boundary of the Hilbert cube Q.

Hyperspaces of two-dimensional continua

Michael Levin, Yaki Sternfeld (1996)

Fundamenta Mathematicae

Let X be a compact metric space and let C(X) denote the space of subcontinua of X with the Hausdorff metric. It is proved that every two-dimensional continuum X contains, for every n ≥ 1, a one-dimensional subcontinuum T n with d i m C ( T n ) n . This implies that X contains a compact one-dimensional subset T with dim C (T) = ∞.

Hyperspaces of universal curves and 2-cells are true F σ δ -sets

Paweł Krupski (2002)

Colloquium Mathematicae

It is shown that the following hyperspaces, endowed with the Hausdorff metric, are true absolute F σ δ -sets: (1) ℳ ²₁(X) of Sierpiński universal curves in a locally compact metric space X, provided ℳ ²₁(X) ≠ ∅ ; (2) ℳ ³₁(X) of Menger universal curves in a locally compact metric space X, provided ℳ ³₁(X) ≠ ∅ ; (3) 2-cells in the plane.

Ideal Banach category theorems and functions

Zbigniew Piotrowski (1997)

Mathematica Bohemica

Based on some earlier findings on Banach Category Theorem for some “nice” σ -ideals by J. Kaniewski, D. Rose and myself I introduce the h operator ( h stands for “heavy points”) to refine and generalize kernel constructions of A. H. Stone. Having obtained in this way a generalized Kuratowski’s decomposition theorem I prove some characterizations of the domains of functions having “many” points of h -continuity. Results of this type lead, in the case of the σ -ideal of meager sets, to important statements...

Induced almost continuous functions on hyperspaces

Alejandro Illanes (2006)

Colloquium Mathematicae

For a metric continuum X, let C(X) (resp., 2 X ) be the hyperspace of subcontinua (resp., nonempty closed subsets) of X. Let f: X → Y be an almost continuous function. Let C(f): C(X) → C(Y) and 2 f : 2 X 2 Y be the induced functions given by C ( f ) ( A ) = c l Y ( f ( A ) ) and 2 f ( A ) = c l Y ( f ( A ) ) . In this paper, we prove that: • If 2 f is almost continuous, then f is continuous. • If C(f) is almost continuous and X is locally connected, then f is continuous. • If X is not locally connected, then there exists an almost continuous function f: X → [0,1] such that...

Induced near-homeomorphisms

Włodzimierz J. Charatonik (2000)

Commentationes Mathematicae Universitatis Carolinae

We construct examples of mappings f and g between locally connected continua such that 2 f and C ( f ) are near-homeomorphisms while f is not, and 2 g is a near-homeomorphism, while g and C ( g ) are not. Similar examples for refinable mappings are constructed.

Currently displaying 341 – 360 of 1011