Displaying 61 – 80 of 96

Showing per page

Some results on L Σ ( κ ) -spaces

Fidel Casarrubias Segura, Oleg Okunev, Paniagua C. G. Ramírez (2008)

Commentationes Mathematicae Universitatis Carolinae

We present several results related to L Σ ( κ ) -spaces where κ is a finite cardinal or ω ; we consider products and some constructions that lead from spaces of these classes to other spaces of similar classes.

Spaces of continuous functions, Σ -products and Box Topology

J. Angoa, Angel Tamariz-Mascarúa (2006)

Commentationes Mathematicae Universitatis Carolinae

For a Tychonoff space X , we will denote by X 0 the set of its isolated points and X 1 will be equal to X X 0 . The symbol C ( X ) denotes the space of real-valued continuous functions defined on X . κ is the Cartesian product κ with its box topology, and C ( X ) is C ( X ) with the topology inherited from X . By C ^ ( X 1 ) we denote the set { f C ( X 1 ) : f can be continuously extended to all of X } . A space X is almost- ω -resolvable if it can be partitioned by a countable family of subsets in such a way that every non-empty open subset of X has a non-empty...

Spaces of ω-limit sets of graph maps

Jie-Hua Mai, Song Shao (2007)

Fundamenta Mathematicae

Let (X,f) be a dynamical system. In general the set of all ω-limit sets of f is not closed in the hyperspace of closed subsets of X. In this paper we study the case when X is a graph, and show that the family of ω-limit sets of a graph map is closed with respect to the Hausdorff metric.

Spaces with star countable extent

A. D. Rojas-Sánchez, Angel Tamariz-Mascarúa (2016)

Commentationes Mathematicae Universitatis Carolinae

For a topological property P , we say that a space X is star P if for every open cover 𝒰 of the space X there exists A X such that s t ( A , 𝒰 ) = X . We consider space with star countable extent establishing the relations between the star countable extent property and the properties star Lindelöf and feebly Lindelöf. We describe some classes of spaces in which the star countable extent property is equivalent to either the Lindelöf property or separability. An example is given of a Tychonoff star Lindelöf space with...

Striped structures of stable and unstable sets of expansive homeomorphisms and a theorem of K. Kuratowski on independent sets

Hisao Kato (1993)

Fundamenta Mathematicae

We investigate striped structures of stable and unstable sets of expansive homeomorphisms and continuum-wise expansive homeomorphisms. The following theorem is proved: if f : X → X is an expansive homeomorphism of a compact metric space X with dim X > 0, then the decompositions W S ( x ) | x X and W ( u ) ( x ) | x X of X into stable and unstable sets of f respectively are uncountable, and moreover there is σ (= s or u) and ϱ > 0 such that there is a Cantor set C in X with the property that for each x ∈ C, W σ ( x ) contains a nondegenerate...

Strong shape of the Stone-Čech compactification

Sibe Mardešić (1992)

Commentationes Mathematicae Universitatis Carolinae

J. Keesling has shown that for connected spaces X the natural inclusion e : X β X of X in its Stone-Čech compactification is a shape equivalence if and only if X is pseudocompact. This paper establishes the analogous result for strong shape. Moreover, pseudocompact spaces are characterized as spaces which admit compact resolutions, which improves a result of I. Lončar.

Strongly sequential spaces

Frédéric Mynard (2000)

Commentationes Mathematicae Universitatis Carolinae

The problem of Y. Tanaka [10] of characterizing the topologies whose products with each first-countable space are sequential, is solved. The spaces that answer the problem are called strongly sequential spaces in analogy to strongly Fréchet spaces.

Currently displaying 61 – 80 of 96