On closed inverse images of base-paracompact spaces.
For any class 𝒦 of compacta and any compactum X we say that: (a) X is confluently 𝒦-representable if X is homeomorphic to the inverse limit of an inverse sequence of members of 𝒦 with confluent bonding mappings, and (b) X is confluently 𝒦-like provided that X admits, for every ε >0, a confluent ε-mapping onto a member of 𝒦. The symbol 𝕃ℂ stands for the class of all locally connected compacta. It is proved in this paper that for each compactum X and each family 𝒦 of graphs, X is confluently...
We prove that it is independent of ZFC whether every Hausdorff countable space of weight less than has a dense regular subspace. Examples are given of countable Hausdorff spaces of weight which do not have dense Urysohn subspaces. We also construct an example of a countable Urysohn space, which has no dense completely Hausdorff subspace. On the other hand, we establish that every Hausdorff space of -weight less than has a dense completely Hausdorff (and hence Urysohn) subspace. We show that...
The well-known result of S. Mazurkiewicz that the simple closed curve is the only nondegenerate locally connected plane homogeneous continuum is extended to generalized homogeneity with respect to some other classes of mappings. Several open problems in the area are posed.