Several classes of uniform spaces connected with Banach valued mappings
We complement the literature by proving that for a fixed-point free map the statements (1) admits a finite functionally closed cover with for all (i.e., a coloring) and (2) is fixed-point free are equivalent. When functionally closed is weakened to closed, we show that normality is sufficient to prove equivalence, and give an example to show it cannot be omitted. We also show that a theorem due to van Mill is sharp: for every we construct a strongly zero-dimensional Tychonov space...
Paracompactness (-paracompactness) and normality of a subspace in a space defined by Arhangel’skii and Genedi [4] are fundamental in the study of relative topological properties ([2], [3]). These notions have been investigated by primary using of the notion of weak - or weak -embeddings, which are extension properties of functions defined in [2] or [18]. In fact, Bella and Yaschenko [8] characterized Tychonoff spaces which are normal in every larger Tychonoff space, and this result is essentially...
The class of Hausdorff spaces (or of Tychonoff spaces) which admit a Hausdorff (respectively Tychonoff) sequentially compact extension has not been characterized. We give some new conditions, in particular, we prove that every Tychonoff locally sequentially compact space has a Tychonoff one-point sequentially compact extension. We also give some results about extension of functions and about lattice properties of the family of all minimal sequentially compact extensions of a given space.
Arhangel’skii [Sci. Math. Jpn. 55 (2002), 153–201] defined notions of relative paracompactness in terms of locally finite open partial refinement and asked if one can generalize the notions above to the well known Michael’s criteria of paracompactness in [17] and [18]. In this paper, we consider some versions of relative paracompactness defined by locally finite (not necessarily open) partial refinement or locally finite closed partial refinement, and also consider closure-preserving cases, such...
The metric Markov cotype of barycentric metric spaces is computed, yielding the first class of metric spaces that are not Banach spaces for which this bi-Lipschitz invariant is understood. It is shown that this leads to new nonlinear spectral calculus inequalities, as well as a unified framework for Lipschitz extension, including new Lipschitz extension results for CAT (0) targets. An example that elucidates the relation between metric Markov cotype and Rademacher cotype is analyzed, showing that...
We show that there exist -metrizable spaces which do not have the Dugundji extension property ( with the countable box topology is such a space). This answers a question posed by the second author in 1972, and shows that certain results of van Douwen and Borges are false.
Certain properties of homotopies of admissible multivalued mappings shall be presented, along with their applications as the tool for examining the acyclicity of a space.
An embedding X ⊂ G of a topological space X into a topological group G is called functorial if every homeomorphism of X extends to a continuous group homomorphism of G. It is shown that the interval [0, 1] admits no functorial embedding into a finite-dimensional or metrizable topological group.
We study those compactifications of a space such that every autohomeomorphism of the space can be continuously extended over the compactification. These are called H-compactifications. Van Douwen proved that there are exactly three H-compactifications of the real line. We prove that there exist only two H-compactifications of Euclidean spaces of higher dimension. Next we show that there are 26 H-compactifications of a countable sum of real lines and 11 H-compactifications of a countable sum of Euclidean...