No upper bound for cardinalities of Tychonoff C.C.C. spaces with a -diagonal exists (an answer to J. Ginsburg and R. G. Woods’ question)
Let , be metric spaces and an injective mapping. We put , and (the distortion of the mapping ). We investigate the minimum dimension such that every -point metric space can be embedded into the space with a prescribed distortion . We obtain that this is possible for , where is a suitable absolute constant. This improves a result of Johnson, Lindenstrauss and Schechtman [JLS87] (with a simpler proof). Related results for embeddability into are obtained by a similar method.