Page 1

Displaying 1 – 19 of 19

Showing per page

On dense subspaces satisfying stronger separation axioms

Ofelia Teresa Alas, Mihail G. Tkachenko, Vladimir Vladimirovich Tkachuk, Richard Gordon Wilson, Ivan V. Yashchenko (2001)

Czechoslovak Mathematical Journal

We prove that it is independent of ZFC whether every Hausdorff countable space of weight less than c has a dense regular subspace. Examples are given of countable Hausdorff spaces of weight c which do not have dense Urysohn subspaces. We also construct an example of a countable Urysohn space, which has no dense completely Hausdorff subspace. On the other hand, we establish that every Hausdorff space of π -weight less than 𝔭 has a dense completely Hausdorff (and hence Urysohn) subspace. We show that...

On embeddings into C p ( X ) where X is Lindelöf

Masami Sakai (1992)

Commentationes Mathematicae Universitatis Carolinae

A.V. Arkhangel’skii asked that, is it true that every space Y of countable tightness is homeomorphic to a subspace (to a closed subspace) of C p ( X ) where X is Lindelöf? C p ( X ) denotes the space of all continuous real-valued functions on a space X with the topology of pointwise convergence. In this note we show that the two arrows space is a counterexample for the problem by showing that every separable compact linearly ordered topological space is second countable if it is homeomorphic to a subspace of C p ( X ) ...

On tame embeddings of solenoids into 3-space

Boju Jiang, Shicheng Wang, Hao Zheng, Qing Zhou (2011)

Fundamenta Mathematicae

Solenoids are inverse limits of the circle, and the classical knot theory is the theory of tame embeddings of the circle into 3-space. We make a general study, including certain classification results, of tame embeddings of solenoids into 3-space, seen as the "inverse limits" of tame embeddings of the circle. Some applications in topology and in dynamics are discussed. In particular, there are tamely embedded solenoids Σ ⊂ ℝ³ which are strictly achiral. Since solenoids are non-planar,...

On the extent of star countable spaces

Ofelia Alas, Lucia Junqueira, Jan Mill, Vladimir Tkachuk, Richard Wilson (2011)

Open Mathematics

For a topological property P, we say that a space X is star Pif for every open cover Uof the space X there exists Y ⊂ X such that St(Y,U) = X and Y has P. We consider star countable and star Lindelöf spaces establishing, among other things, that there exists first countable pseudocompact spaces which are not star Lindelöf. We also describe some classes of spaces in which star countability is equivalent to countable extent and show that a star countable space with a dense σ-compact subspace can have...

On universality of countable and weak products of sigma hereditarily disconnected spaces

Taras Banakh, Robert Cauty (2001)

Fundamenta Mathematicae

Suppose a metrizable separable space Y is sigma hereditarily disconnected, i.e., it is a countable union of hereditarily disconnected subspaces. We prove that the countable power X ω of any subspace X ⊂ Y is not universal for the class ₂ of absolute G δ σ -sets; moreover, if Y is an absolute F σ δ -set, then X ω contains no closed topological copy of the Nagata space = W(I,ℙ); if Y is an absolute G δ -set, then X ω contains no closed copy of the Smirnov space σ = W(I,0). On the other hand, the countable power X ω of...

Ordinals in topological groups

Raushan Z. Buzyakova (2007)

Fundamenta Mathematicae

We show that if an uncountable regular cardinal τ and τ + 1 embed in a topological group G as closed subspaces then G is not normal. We also prove that an uncountable regular cardinal cannot be embedded in a torsion free Abelian group that is hereditarily normal. These results are corollaries to our main results about ordinals in topological groups. To state the main results, let τ be an uncountable regular cardinal and G a T₁ topological group. We prove, among others, the following statements:...

Currently displaying 1 – 19 of 19

Page 1