La théorie des points fixes des applications à itérée condensante
In accordance with the Bing-Borsuk conjecture, we show that if X is an n-dimensional homogeneous metric ANR continuum and x ∈ X, then there is a local basis at x consisting of connected open sets U such that the cohomological properties of Ū and bd U are similar to the properties of the closed ball ⁿ ⊂ ℝⁿ and its boundary . We also prove that a metric ANR compactum X of dimension n is dimensionally full-valued if and only if the group Hₙ(X,X∖x;ℤ) is not trivial for some x ∈ X. This implies that...
In this paper we generalize the class of admissible mappings as due by L. Górniewicz in 1976. Namely we define the notion of locally admissible mappings. Some properties and applications to the fixed point problem are presented.
We provide a machinery for transferring some properties of metrizable ANR-spaces to metrizable LCn-spaces. As a result, we show that for completely metrizable spaces the properties ALCn, LCn and WLCn coincide to each other. We also provide the following spectral characterizations of ALCn and celllike compacta: A compactum X is ALCn if and only if X is the limit space of a σ-complete inverse system S = {Xα , pβ α , α < β < τ} consisting of compact metrizable LCn-spaces Xα such that all bonding...