Displaying 81 – 100 of 152

Showing per page

On semigroups with an infinitesimal operator

Jolanta Olko (2005)

Annales Polonici Mathematici

Let F t : t 0 be an iteration semigroup of linear continuous set-valued functions. If the semigroup has an infinitesimal operator then it is a uniformly continuous semigroup majorized by an exponential semigroup. Moreover, for sufficiently small t every linear selection of F t is invertible and there exists an exponential semigroup f t : t 0 of linear continuous selections f t of F t .

On the cliquish, quasicontinuous and measurable selections

Milan Matejdes (1991)

Mathematica Bohemica

The purpose of this paper is the investigation of the necessary and sufficient conditions under which a given multifunctions admits a cliquish and measurable selection. Our investigation also covers the search for quasicontinuous selections for multifunctions which are continuous with respect to the generalized notion of the semi-quasicontinuity.

On the extension and generation of set-valued mappings of bounded variation

V. V. Chistyakov, A. Rychlewicz (2002)

Studia Mathematica

We study set-valued mappings of bounded variation of one real variable. First we prove the existence of an extension of a metric space valued mapping from a subset of the reals to the whole set of reals with preservation of properties of the initial mapping: total variation, Lipschitz constant or absolute continuity. Then we show that a set-valued mapping of bounded variation defined on an arbitrary subset of the reals admits a regular selection of bounded variation. We introduce a notion of generated...

On δ -continuous selections of small multifunctions and covering properties

Alessandro Fedeli, Jan Pelant (1991)

Commentationes Mathematicae Universitatis Carolinae

The spaces for which each δ -continuous function can be extended to a 2 δ -small point-open l.s.cṁultifunction (resp. point-closed u.s.cṁultifunction) are studied. Some sufficient conditions and counterexamples are given.

Open maps having the Bula property

Valentin Gutev, Vesko Valov (2009)

Fundamenta Mathematicae

An open continuous map f from a space X onto a paracompact C-space Y admits two disjoint closed sets F₀,F₁ ⊂ X with f(F₀) = Y = f(F₁), provided all fibers of f are infinite and C*-embedded in X. Applications are given to the existence of "disjoint" usco multiselections of set-valued l.s.c. mappings defined on paracompact C-spaces, and to special type of factorizations of open continuous maps from metrizable spaces onto paracompact C-spaces. This settles several open questions.

Parametrization of Riemann-measurable selections for multifunctions of two variables with application to differential inclusions

Giovanni Anello, Paolo Cubiotti (2004)

Annales Polonici Mathematici

We consider a multifunction F : T × X 2 E , where T, X and E are separable metric spaces, with E complete. Assuming that F is jointly measurable in the product and a.e. lower semicontinuous in the second variable, we establish the existence of a selection for F which is measurable with respect to the first variable and a.e. continuous with respect to the second one. Our result is in the spirit of [11], where multifunctions of only one variable are considered.

Polynomial selections and separation by polynomials

Szymon Wąsowicz (1996)

Studia Mathematica

K. Nikodem and the present author proved in [3] a theorem concerning separation by affine functions. Our purpose is to generalize that result for polynomials. As a consequence we obtain two theorems on separation of an n-convex function from an n-concave function by a polynomial of degree at most n and a stability result of Hyers-Ulam type for polynomials.

Currently displaying 81 – 100 of 152