Displaying 241 – 260 of 2505

Showing per page

Algebraic characterization of finite (branched) coverings

M. Mulero (1998)

Fundamenta Mathematicae

Every continuous map X → S defines, by composition, a homomorphism between the corresponding algebras of real-valued continuous functions C(S) → C(X). This paper deals with algebraic properties of the homomorphism C(S) → C(X) in relation to topological properties of the map X → S. The main result of the paper states that a continuous map X → S between topological manifolds is a finite (branched) covering, i.e., an open and closed map whose fibres are finite, if and only if the induced homomorphism...

Algebraic properties of quasi-finite complexes

M. Cencelj, J. Dydak, J. Smrekar, A. Vavpetič, Ž. Virk (2007)

Fundamenta Mathematicae

A countable CW complex K is quasi-finite (as defined by A. Karasev) if for every finite subcomplex M of K there is a finite subcomplex e(M) such that any map f: A → M, where A is closed in a separable metric space X satisfying XτK, has an extension g: X → e(M). Levin's results imply that none of the Eilenberg-MacLane spaces K(G,2) is quasi-finite if G ≠ 0. In this paper we discuss quasi-finiteness of all Eilenberg-MacLane spaces. More generally, we deal with CW complexes with finitely many...

Algebraic properties of rings of continuous functions

M. Mulero (1996)

Fundamenta Mathematicae

This paper is devoted to the study of algebraic properties of rings of continuous functions. Our aim is to show that these rings, even if they are highly non-noetherian, have properties quite similar to the elementary properties of noetherian rings: we give going-up and going-down theorems, a characterization of z-ideals and of primary ideals having as radical a maximal ideal and a flatness criterion which is entirely analogous to the one for modules over principal ideal domains.

Algebras and spaces of dense constancies

Angelo Bella, Jorge Martinez, Scott D. Woodward (2001)

Czechoslovak Mathematical Journal

A DC-space (or space of dense constancies) is a Tychonoff space X such that for each f C ( X ) there is a family of open sets { U i i I } , the union of which is dense in X , such that f , restricted to each U i , is constant. A number of characterizations of DC-spaces are given, which lead to an algebraic generalization of the concept, which, in turn, permits analysis of DC-spaces in the language of archimedean f -algebras. One is led naturally to the notion of an almost DC-space (in which the densely constant functions...

Algebras of Borel measurable functions

Michał Morayne (1992)

Fundamenta Mathematicae

We determine the size levels for any function on the hyperspace of an arc as follows. Assume Z is a continuum and consider the following three conditions: 1) Z is a planar AR; 2) cut points of Z have component number two; 3) any true cyclic element of Z contains at most two cut points of Z. Then any size level for an arc satisfies 1)-3) and conversely, if Z satisfies 1)-3), then Z is a diameter level for some arc.

All CAT(0) boundaries of a group of the form H × K are CE equivalent

Christopher Mooney (2009)

Fundamenta Mathematicae

M. Bestvina has shown that for any given torsion-free CAT(0) group G, all of its boundaries are shape equivalent. He then posed the question of whether they satisfy the stronger condition of being cell-like equivalent. In this article we prove that the answer is "Yes" in the situation where the group in question splits as a direct product with infinite factors. We accomplish this by proving an interesting theorem in shape theory.

Almost continuity vs closure continuity

B. A. Saleemi, Naseer Shahzad, M. A. Alghamdi (2001)

Archivum Mathematicum

We provide an answer to a question: under what conditions almost continuity in the sense of Husain implies closure continuity?

Currently displaying 241 – 260 of 2505