Displaying 21 – 40 of 341

Showing per page

A characterization of regular averaging operators and its consequences

Spiros A. Argyros, Alexander D. Arvanitakis (2002)

Studia Mathematica

We present a characterization of continuous surjections, between compact metric spaces, admitting a regular averaging operator. Among its consequences, concrete continuous surjections from the Cantor set 𝓒 to [0,1] admitting regular averaging operators are exhibited. Moreover we show that the set of this type of continuous surjections from 𝓒 to [0,1] is dense in the supremum norm in the set of all continuous surjections. The non-metrizable case is also investigated. As a consequence, we obtain...

A characterization of ω-limit sets for piecewise monotone maps of the interval

Andrew D. Barwell (2010)

Fundamenta Mathematicae

For a piecewise monotone map f on a compact interval I, we characterize the ω-limit sets that are bounded away from the post-critical points of f. If the pre-critical points of f are dense, for example when f is locally eventually onto, and Λ ⊂ I is closed, invariant and contains no post-critical point, then Λ is the ω-limit set of a point in I if and only if Λ is internally chain transitive in the sense of Hirsch, Smith and Zhao; the proof relies upon symbolic dynamics. By identifying points of...

A cohomological index of Fuller type for parameterized set-valued maps in normed spaces

Robert Skiba (2014)

Open Mathematics

We construct a cohomological index of the Fuller type for set-valued flows in normed linear spaces satisfying the properties of existence, excision, additivity, homotopy and topological invariance. In particular, the constructed index detects periodic orbits and stationary points of set-valued dynamical systems, i.e., those generated by differential inclusions. The basic methods to calculate the index are also presented.

A connection between multiplication in C(X) and the dimension of X

Andrzej Komisarski (2006)

Fundamenta Mathematicae

Let X be a compact Hausdorff topological space. We show that multiplication in the algebra C(X) is open iff dim X < 1. On the other hand, the existence of non-empty open sets U,V ⊂ C(X) satisfying Int(U· V) = ∅ is equivalent to dim X > 1. The preimage of every set of the first category in C(X) under the multiplication map is of the first category in C(X) × C(X) iff dim X ≤ 1.

A construction of noncontractible simply connected cell-like two-dimensional Peano continua

Katsuya Eda, Umed H. Karimov, Dušan Repovš (2007)

Fundamenta Mathematicae

Using the topologist sine curve we present a new functorial construction of cone-like spaces, starting in the category of all path-connected topological spaces with a base point and continuous maps, and ending in the subcategory of all simply connected spaces. If one starts from a noncontractible n-dimensional Peano continuum for any n > 0, then our construction yields a simply connected noncontractible (n + 1)-dimensional cell-like Peano continuum. In particular, starting from the circle 𝕊¹,...

A continuous operator extending fuzzy ultrametrics

I. Stasyuk, Edward D. Tymchatyn (2011)

Commentationes Mathematicae Universitatis Carolinae

We consider the problem of simultaneous extension of fuzzy ultrametrics defined on closed subsets of a complete fuzzy ultrametric space. We construct an extension operator that preserves the operation of pointwise minimum of fuzzy ultrametrics with common domain and an operation which is an analogue of multiplication by a constant defined for fuzzy ultrametrics. We prove that the restriction of the extension operator onto the set of continuous, partial fuzzy ultrametrics is continuous with respect...

A continuous operator extending ultrametrics

I. Stasyuk, Edward D. Tymchatyn (2009)

Commentationes Mathematicae Universitatis Carolinae

The problem of continuous simultaneous extension of all continuous partial ultrametrics defined on closed subsets of a compact zero-dimensional metric space was recently solved by E.D. Tymchatyn and M. Zarichnyi and improvements to their result were made by I. Stasyuk. In the current paper we extend these results to complete, bounded, zero-dimensional metric spaces and to both continuous and uniformly continuous partial ultrametrics.

Currently displaying 21 – 40 of 341